The following is a list of integrals (antiderivative functions) of rational functions.
Any rational function can be integrated by partial fraction decomposition of the function into a sum of functions of the form:

, and

which can then be integrated term by term.
For other types of functions, see lists of integrals.
Miscellaneous integrands


![{\displaystyle \int {\frac {1}{x^{2}-a^{2}}}\,dx={\frac {1}{2a}}\ln \left|{\frac {x-a}{x+a}}\right|+C={\begin{cases}\displaystyle -{\frac {1}{a}}\,\operatorname {artanh} {\frac {x}{a}}+C={\frac {1}{2a}}\ln {\frac {a-x}{a+x}}+C&{\text{(for }}|x|<|a|{\mbox{)}}\\[12pt]\displaystyle -{\frac {1}{a}}\,\operatorname {arcoth} {\frac {x}{a}}+C={\frac {1}{2a}}\ln {\frac {x-a}{x+a}}+C&{\text{(for }}|x|>|a|{\mbox{)}}\end{cases}}}](./f707d02dbc04ceb2d02ddb5bfd60ab31f45b6b55.svg)
![{\displaystyle \int {\frac {1}{a^{2}-x^{2}}}\,dx={\frac {1}{2a}}\ln \left|{\frac {a+x}{a-x}}\right|+C={\begin{cases}\displaystyle {\frac {1}{a}}\,\operatorname {artanh} {\frac {x}{a}}+C={\frac {1}{2a}}\ln {\frac {a+x}{a-x}}+C&{\text{(for }}|x|<|a|{\mbox{)}}\\[12pt]\displaystyle {\frac {1}{a}}\,\operatorname {arcoth} {\frac {x}{a}}+C={\frac {1}{2a}}\ln {\frac {x+a}{x-a}}+C&{\text{(for }}|x|>|a|{\mbox{)}}\end{cases}}}](./5d41f30fbfce8f00f5e1503b29b5e0b8415fadec.svg)
![{\displaystyle \int {\frac {dx}{x^{2^{n}}+1}}={\frac {1}{2^{n-1}}}\sum _{k=1}^{2^{n-1}}\sin \left({\frac {2k-1}{2^{n}}}\pi \right)\arctan \left[\left(x-\cos \left({\frac {2k-1}{2^{n}}}\pi \right)\right)\csc \left({\frac {2k-1}{2^{n}}}\pi \right)\right]-{\frac {1}{2}}\cos \left({\frac {2k-1}{2^{n}}}\pi \right)\ln \left|x^{2}-2x\cos \left({\frac {2k-1}{2^{n}}}\pi \right)+1\right|+C}](./5086de865f6047c3f115bfbc3bd5ffde147a645c.svg)
Many of the following antiderivatives have a term of the form ln |ax + b|. Because this is undefined when x = −b / a, the most general form of the antiderivative replaces the constant of integration with a locally constant function.[1] However, it is conventional to omit this from the notation. For example,
is usually abbreviated as
where C is to be understood as notation for a locally constant function of x. This convention will be adhered to in the following.
(Cavalieri's quadrature formula)
(Incomplete beta function)












For
![{\displaystyle \int {\frac {1}{ax^{2}+bx+c}}dx={\begin{cases}\displaystyle {\frac {2}{\sqrt {4ac-b^{2}}}}\arctan {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}+C&{\text{(for }}4ac-b^{2}>0{\mbox{)}}\\[12pt]\displaystyle {\frac {1}{\sqrt {b^{2}-4ac}}}\ln \left|{\frac {2ax+b-{\sqrt {b^{2}-4ac}}}{2ax+b+{\sqrt {b^{2}-4ac}}}}\right|+C={\begin{cases}\displaystyle -{\frac {2}{\sqrt {b^{2}-4ac}}}\,\operatorname {artanh} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}+C&{\text{(for }}|2ax+b|<{\sqrt {b^{2}-4ac}}{\mbox{)}}\\[6pt]\displaystyle -{\frac {2}{\sqrt {b^{2}-4ac}}}\,\operatorname {arcoth} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}+C&{\text{(else)}}\end{cases}}&{\text{(for }}4ac-b^{2}<0{\mbox{)}}\\[12pt]\displaystyle -{\frac {2}{2ax+b}}+C&{\text{(for }}4ac-b^{2}=0{\mbox{)}}\end{cases}}}](./8c6e45e8f485cc92285459242e5edc389b0a4b3c.svg)

![{\displaystyle \int {\frac {mx+n}{ax^{2}+bx+c}}\,dx={\begin{cases}\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|+{\frac {2an-bm}{a{\sqrt {4ac-b^{2}}}}}\arctan {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}+C&{\text{(for }}4ac-b^{2}>0{\mbox{)}}\\[12pt]\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|+{\frac {2an-bm}{2a{\sqrt {b^{2}-4ac}}}}\ln \left|{\frac {2ax+b-{\sqrt {b^{2}-4ac}}}{2ax+b+{\sqrt {b^{2}-4ac}}}}\right|+C={\begin{cases}\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {2an-bm}{a{\sqrt {b^{2}-4ac}}}}\,\operatorname {artanh} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}+C&{\text{(for }}|2ax+b|<{\sqrt {b^{2}-4ac}}{\mbox{)}}\\[6pt]\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {2an-bm}{a{\sqrt {b^{2}-4ac}}}}\,\operatorname {arcoth} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}+C&{\text{(else)}}\end{cases}}&{\text{(for }}4ac-b^{2}<0{\mbox{)}}\\[12pt]\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {2an-bm}{a(2ax+b)}}+C={\frac {m}{a}}\ln \left|x+{\frac {b}{2a}}\right|-{\frac {2an-bm}{a(2ax+b)}}+C&{\text{(for }}4ac-b^{2}=0{\mbox{)}}\end{cases}}}](./137aeb719faa0d412412ce2afb21f694747e79af.svg)



- The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m and p toward 0.
- These reduction formulas can be used for integrands having integer and/or fractional exponents.






- The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m, n and p toward 0.
- These reduction formulas can be used for integrands having integer and/or fractional exponents.
- Special cases of these reductions formulas can be used for integrands of the form
by setting B to 0.



- The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m, p and q toward 0.
- These reduction formulas can be used for integrands having integer and/or fractional exponents.
- Special cases of these reductions formulas can be used for integrands of the form
and
by setting m and/or B to 0.







- The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m and p toward 0.
- These reduction formulas can be used for integrands having integer and/or fractional exponents.
- Special cases of these reductions formulas can be used for integrands of the form
when
by setting m to 0.








- The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m and p toward 0.
- These reduction formulas can be used for integrands having integer and/or fractional exponents.
- Special cases of these reductions formulas can be used for integrands of the form
and
by setting m and/or B to 0.






- The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m and p toward 0.
- These reduction formulas can be used for integrands having integer and/or fractional exponents.
- Special cases of these reductions formulas can be used for integrands of the form
when
by setting m to 0.








- The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m and p toward 0.
- These reduction formulas can be used for integrands having integer and/or fractional exponents.
- Special cases of these reductions formulas can be used for integrands of the form
and
by setting m and/or B to 0.






References