In the expressions in this article,
is the standard normal probability density function,
is the corresponding cumulative distribution function (where erf is the error function), and
is Owen's T function.
Owen[1] has an extensive list of Gaussian-type integrals; only a subset is given below.
Indefinite integrals



[2]

In the previous two integrals, n!! is the double factorial: for even n it is equal to the product of all even numbers from 2 to n, and for odd n it is the product of all odd numbers from 1 to n; additionally it is assumed that 0!! = (−1)!! = 1.

[3]
![{\displaystyle \int x\varphi (a+bx)\,dx=-{\frac {1}{b^{2}}}\left[\varphi (a+bx)+a\Phi (a+bx)\right]+C}](./28237d8f3f147ae4721ad68df5858b79d2246d81.svg)
![{\displaystyle \int x^{2}\varphi (a+bx)\,dx={\frac {1}{b^{3}}}\left[\left(a^{2}+1\right)\Phi (a+bx)+\left(a-bx\right)\varphi (a+bx)\right]+C}](./871e9366641cf60ed1fcf8b12a6b2c8a96fdce1b.svg)

![{\displaystyle \int \Phi (a+bx)\,dx={\frac {1}{b}}\left[\left(a+bx\right)\Phi (a+bx)+\varphi (a+bx)\right]+C}](./5f619a22730b87549012a4b73a2e8282a8602fc7.svg)
![{\displaystyle \int x\Phi (a+bx)\,dx={\frac {1}{2b^{2}}}\left[\left(b^{2}x^{2}-a^{2}-1\right)\Phi (a+bx)+\left(bx-a\right)\varphi (a+bx)\right]+C}](./94ee527744f36a6b2fa224254e5f3e2fae00083a.svg)
![{\displaystyle \int x^{2}\Phi (a+bx)\,dx={\frac {1}{3b^{3}}}\left[\left(b^{3}x^{3}+a^{3}+3a\right)\Phi (a+bx)+\left(b^{2}x^{2}-abx+a^{2}+2\right)\varphi (a+bx)\right]+C}](./a6fc7f22381797b6bca8bed2df286ef3657be9c1.svg)
![{\displaystyle \int x^{n}\Phi (x)\,dx={\frac {1}{n+1}}\left[\left(x^{n+1}-nx^{n-1}\right)\Phi (x)+x^{n}\varphi (x)+n(n-1)\int x^{n-2}\Phi (x)\,dx\right]+C}](./28d32b129e6d9bc3cef676ec53b10958d6613db2.svg)



Definite integrals









[4]






References
- Owen, D. (1980). "A table of normal integrals". Communications in Statistics: Simulation and Computation. B9 (4): 389–419. doi:10.1080/03610918008812164.
- Patel, Jagdish K.; Read, Campbell B. (1996). Handbook of the normal distribution (2nd ed.). CRC Press. ISBN 0-8247-9342-0.