Matrix t |
---|
Notation |
 |
---|
Parameters |
location (real matrix)
scale (positive-definite real matrix)
scale (positive-definite real matrix)
degrees of freedom (real) |
---|
Support |
 |
---|
PDF |

|
---|
CDF |
No analytic expression |
---|
Mean |
if , else undefined |
---|
Mode |
 |
---|
Variance |
if , else undefined |
---|
CF |
see below |
---|
In statistics, the matrix t-distribution (or matrix variate t-distribution) is the generalization of the multivariate t-distribution from vectors to matrices.[1][2]
The matrix t-distribution shares the same relationship with the multivariate t-distribution that the matrix normal distribution shares with the multivariate normal distribution: If the matrix has only one row, or only one column, the distributions become equivalent to the corresponding (vector-)multivariate distribution. The matrix t-distribution is the compound distribution that results from an infinite mixture of a matrix normal distribution with an inverse Wishart distribution placed over either of its covariance matrices,[1] and the multivariate t-distribution can be generated in a similar way.[2]
In a Bayesian analysis of a multivariate linear regression model based on the matrix normal distribution, the matrix t-distribution is the posterior predictive distribution.[3]
Definition
For a matrix t-distribution, the probability density function at the point
of an
space is

where the constant of integration K is given by

Here
is the multivariate gamma function.
Properties
If
, then we have the following properties:[2]
Expected values
The mean, or expected value is, if
:
![{\displaystyle E[\mathbf {X} ]=\mathbf {M} }](./b42fa592683295b227432c1af033cbfcf14e62ce.svg)
and we have the following second-order expectations, if
:
![{\displaystyle E[(\mathbf {X} -\mathbf {M} )(\mathbf {X} -\mathbf {M} )^{T}]={\frac {\mathbf {\Sigma } \operatorname {tr} (\mathbf {\Omega } )}{\nu -2}}}](./2d002d3e67f2344dcc33264784a79fe0ac877eac.svg)
![{\displaystyle E[(\mathbf {X} -\mathbf {M} )^{T}(\mathbf {X} -\mathbf {M} )]={\frac {\mathbf {\Omega } \operatorname {tr} (\mathbf {\Sigma } )}{\nu -2}}}](./fddc9d4d9910044031fc1232a3e10f920aa32de0.svg)
where
denotes trace.
More generally, for appropriately dimensioned matrices A,B,C:
![{\displaystyle {\begin{aligned}E[(\mathbf {X} -\mathbf {M} )\mathbf {A} (\mathbf {X} -\mathbf {M} )^{T}]&={\frac {\mathbf {\Sigma } \operatorname {tr} (\mathbf {A} ^{T}\mathbf {\Omega } )}{\nu -2}}\\E[(\mathbf {X} -\mathbf {M} )^{T}\mathbf {B} (\mathbf {X} -\mathbf {M} )]&={\frac {\mathbf {\Omega } \operatorname {tr} (\mathbf {B} ^{T}\mathbf {\Sigma } )}{\nu -2}}\\E[(\mathbf {X} -\mathbf {M} )\mathbf {C} (\mathbf {X} -\mathbf {M} )]&={\frac {\mathbf {\Sigma } \mathbf {C} ^{T}\mathbf {\Omega } }{\nu -2}}\end{aligned}}}](./42d32d9bbd0bfdcef109fc446b2d1d0155540296.svg)
Transpose transform:

Linear transform: let A (r-by-n), be of full rank r ≤ n and B (p-by-s), be of full rank s ≤ p, then:

The characteristic function and various other properties can be derived from the re-parameterised formulation (see below).
Re-parameterized matrix t-distribution
Re-parameterized matrix t |
---|
Notation |
 |
---|
Parameters |
location (real matrix)
scale (positive-definite real matrix)
scale (positive-definite real matrix)
shape parameter
scale parameter |
---|
Support |
 |
---|
PDF |

|
---|
CDF |
No analytic expression |
---|
Mean |
if , else undefined |
---|
Variance |
if , else undefined |
---|
CF |
see below |
---|
An alternative parameterisation of the matrix t-distribution uses two parameters
and
in place of
.[3]
This formulation reduces to the standard matrix t-distribution with
This formulation of the matrix t-distribution can be derived as the compound distribution that results from an infinite mixture of a matrix normal distribution with an inverse multivariate gamma distribution placed over either of its covariance matrices.
Properties
If
then[2][3]

The property above comes from Sylvester's determinant theorem:

If
and
and
are nonsingular matrices then[2][3]

The characteristic function is[3]

where

and where
is the type-two Bessel function of Herz of a matrix argument.
See also
Notes
- ^ a b Zhu, Shenghuo and Kai Yu and Yihong Gong (2007). "Predictive Matrix-Variate t Models." In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, NIPS '07: Advances in Neural Information Processing Systems 20, pages 1721–1728. MIT Press, Cambridge, MA, 2008. The notation is changed a bit in this article for consistency with the matrix normal distribution article.
- ^ a b c d e Gupta, Arjun K and Nagar, Daya K (1999). Matrix variate distributions. CRC Press. pp. Chapter 4.
{{cite book}}
: CS1 maint: multiple names: authors list (link)
- ^ a b c d e Iranmanesh, Anis, M. Arashi and S. M. M. Tabatabaey (2010). "On Conditional Applications of Matrix Variate Normal Distribution". Iranian Journal of Mathematical Sciences and Informatics, 5:2, pp. 33–43.
External links
|
---|
Discrete univariate | with finite support | |
---|
with infinite support | |
---|
|
---|
Continuous univariate | supported on a bounded interval | |
---|
supported on a semi-infinite interval | |
---|
supported on the whole real line | |
---|
with support whose type varies | |
---|
|
---|
Mixed univariate | |
---|
Multivariate (joint) | |
---|
Directional | |
---|
Degenerate and singular | |
---|
Families | |
---|
|