In probability theory and directional statistics, a wrapped probability distribution is a continuous probability distribution that describes data points that lie on a unit n-sphere. In one dimension, a wrapped distribution consists of points on the unit circle. If
is a random variate in the interval
with probability density function (PDF)
, then
is a circular variable distributed according to the wrapped distribution
and
is an angular variable in the interval
distributed according to the wrapped distribution
.
Any probability density function
on the line can be "wrapped" around the circumference of a circle of unit radius.[1] That is, the PDF of the wrapped variable
in some interval of length 
is

which is a periodic sum of period
. The preferred interval is generally
for which
.
Theory
In most situations, a process involving circular statistics produces angles (
) which lie in the interval
, and are described by an "unwrapped" probability density function
. However, a measurement will yield an angle
which lies in some interval of length
(for example, 0 to
). In other words, a measurement cannot tell whether the true angle
or a wrapped angle
, where
is some unknown integer, has been measured.
If we wish to calculate the expected value of some function of the measured angle it will be:
.
We can express the integral as a sum of integrals over periods of
:
.
Changing the variable of integration to
and exchanging the order of integration and summation, we have

where
is the PDF of the wrapped distribution and
is another unknown integer
. The unknown integer
introduces an ambiguity into the expected value of
, similar to the problem of calculating angular mean. This can be resolved by introducing the parameter
, since
has an unambiguous relationship to the true angle
:
.
Calculating the expected value of a function of
will yield unambiguous answers:
.
For this reason, the
parameter is preferred over measured angles
in circular statistical analysis. This suggests that the wrapped distribution function may itself be expressed as a function of
such that:

where
is defined such that
. This concept can be extended to the multivariate context by an extension of the simple sum to a number of
sums that cover all dimensions in the feature space:

where
is the
th Euclidean basis vector.
Expression in terms of characteristic functions
A fundamental wrapped distribution is the Dirac comb, which is a wrapped Dirac delta function:
.
Using the delta function, a general wrapped distribution can be written
.
Exchanging the order of summation and integration, any wrapped distribution can be written as the convolution of the unwrapped distribution and a Dirac comb:
.
The Dirac comb may also be expressed as a sum of exponentials, so we may write:
.
Again exchanging the order of summation and integration:
.
Using the definition of
, the characteristic function of
yields a Laurent series about zero for the wrapped distribution in terms of the characteristic function of the unwrapped distribution:

or

Analogous to linear distributions,
is referred to as the characteristic function of the wrapped distribution (or more accurately, the characteristic sequence).[2] This is an instance of the Poisson summation formula, and it can be seen that the coefficients of the Fourier series for the wrapped distribution are simply the coefficients of the Fourier transform of the unwrapped distribution at integer values.
Moments
The moments of the wrapped distribution
are defined as:
.
Expressing
in terms of the characteristic function and exchanging the order of integration and summation yields:
.
From the residue theorem we have

where
is the Kronecker delta function. It follows that the moments are simply equal to the characteristic function of the unwrapped distribution for integer arguments:
.
Generation of random variates
If
is a random variate drawn from a linear probability distribution
, then
is a circular variate distributed according to the wrapped
distribution, and
is the angular variate distributed according to the wrapped
distribution, with
.
Entropy
The information entropy of a circular distribution with probability density
is defined as:

where
is any interval of length
.[1] If both the probability density and its logarithm can be expressed as a Fourier series (or more generally, any integral transform on the circle), the orthogonal basis of the series can be used to obtain a closed form expression for the entropy.
The moments of the distribution
are the Fourier coefficients for the Fourier series expansion of the probability density:
.
If the logarithm of the probability density can also be expressed as a Fourier series:

where
.
Then, exchanging the order of integration and summation, the entropy may be written as:
.
Using the orthogonality of the Fourier basis, the integral may be reduced to:
.
For the particular case when the probability density is symmetric about the mean,
and the logarithm may be written:

and

and, since normalization requires that
, the entropy may be written:
.
See also
References
External links
|
---|
Discrete univariate | with finite support | |
---|
with infinite support | |
---|
|
---|
Continuous univariate | supported on a bounded interval | |
---|
supported on a semi-infinite interval | |
---|
supported on the whole real line | |
---|
with support whose type varies | |
---|
|
---|
Mixed univariate | |
---|
Multivariate (joint) | |
---|
Directional | |
---|
Degenerate and singular | |
---|
Families | |
---|
|