Tensairity

Tensairity is a trademarked term[1] for a light weight structural concept that uses low pressure air to stabilize compression elements against buckling.[2] It employs an ancient foundational splinting structure using inflated airbeams and attached stiffeners or cables that gains mechanical advantages for low mass.[3][4] The structure modality has been particularly developed by Mauro Pedretti.[5][6]

Known applications

Bridges, band stand shells,[7], geodesic domes, aircraft wing construction,[8] temporary shop and hospitality.[9]

A related structure modality is tensegrity. Conceivably, an ultralightweight structure evacuated of air would float in the atmosphere, much as a buoy floats in water A crushing load is present destabilizing such structures. However, enclosed-air structures perhaps made of tensairity beams in a tensegrity format holding an enveloping skin could be heated by solar energy and interior activity and then become lighter than air, like hot-air balloons. A torus of 72 inch major diameter and 27 inch minor diameter displaces about 5 pounds of atmosphere, so if the torus weighed less than 5 pounds, and was evacuated, it would be buoyant. Buckminster Fuller designed floating cities (air-filled) so lightweight that they would be buoyant only by the effect of solar heat warming the air within to slightly less density than the surrounding air. As domes, they were about 1/2 mile diameter. As floating spheres, the cities would not experience earthquakes.

References

  1. ^ Rolf H. Luchsinger; Mauro Pedretti; Andreas Reinhard. "Pressure Induced Stability: From Pneumatic Structures to Tensairity" (PDF). Archived from the original (PDF) on April 26, 2013. Retrieved October 5, 2013.
  2. ^ Tensairity Archived 2011-10-03 at the Wayback Machine
  3. ^ Archived 2011-10-03 at the Wayback Machine
  4. ^ Airlight uses tensairity Lightweight and large span: Tensairity at the Wayback Machine (archived January 9, 2008)
  5. ^ "Tensairity®-Brücke" (PDF). Archived from the original (PDF) on July 6, 2011. Retrieved September 13, 2010.
  6. ^ "Webfair". Archived from the original on July 6, 2011. Retrieved September 13, 2010.
  7. ^ Band stand Archived March 1, 2012, at the Wayback Machine
  8. ^ An inflatable wing using the principle of Tensairity
  9. ^ Tensairity solutions for hospitality