In mathematical analysis, the Szegő limit theorems describe the asymptotic behaviour of the determinants of large Toeplitz matrices.[1][2][3] They were first proved by Gábor Szegő.
Notation
Let
be a Fourier series with Fourier coefficients
, relating to each other as
![{\displaystyle w(\theta )=\sum _{k=-\infty }^{\infty }c_{k}e^{ik\theta },\qquad \theta \in [0,2\pi ],}](./9c810eeafda39e98041569e2e0e42d4a70ae3148.svg)

such that the
Toeplitz matrices
are Hermitian, i.e., if
then
. Then both
and eigenvalues
are real-valued and the determinant of
is given by
.
Szegő theorem
Under suitable assumptions the Szegő theorem states that

for any function
that is continuous on the range of
. In particular
 | | 1 |
such that the arithmetic mean of
converges to the integral of
.[4]
First Szegő theorem
The first Szegő theorem[1][3][5] states that, if right-hand side of (1) holds and
, then
 | | 2 |
holds for
and
. The RHS of (2) is the geometric mean of
(well-defined by the arithmetic-geometric mean inequality).
Second Szegő theorem
Let
be the Fourier coefficient of
, written as

The second (or strong) Szegő theorem[1][6] states that, if
, then

See also
References
- ^ a b c Böttcher, Albrecht; Silbermann, Bernd (1990). "Toeplitz determinants". Analysis of Toeplitz operators. Berlin: Springer-Verlag. p. 525. ISBN 3-540-52147-X. MR 1071374.
- ^ Ehrhardt, T.; Silbermann, B. (2001) [1994], "Szegö_limit_theorems", Encyclopedia of Mathematics, EMS Press
- ^ a b Simon, Barry (2011). Szegő's Theorem and Its Descendants: Spectral Theory for L2 Perturbations of Orthogonal Polynomials. Princeton: Princeton University Press. ISBN 978-0-691-14704-8.
- ^ Gray, Robert M. (2006). "Toeplitz and Circulant Matrices: A Review" (PDF). Foundations and Trends in Signal Processing.
- ^ Szegő, G. (1915). "Ein Grenzwertsatz über die Toeplitzschen Determinanten einer reellen positiven Funktion". Math. Ann. 76 (4): 490–503. doi:10.1007/BF01458220. S2CID 123034653.
- ^ Szegő, G. (1952). "On certain Hermitian forms associated with the Fourier series of a positive function". Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.]: 228–238. MR 0051961.