Schiffler point

In geometry, the Schiffler point of a triangle is a triangle center, a point defined from the triangle that is equivariant under Euclidean transformations of the triangle. This point was first defined and investigated by Schiffler et al. (1985).

Definition

A triangle ABC with the incenter I has its Schiffler point at the point of concurrence of the Euler lines of the four triangles BCI, △CAI, △ABI, △ABC. Schiffler's theorem states that these four lines all meet at a single point.[1]

Coordinates

Trilinear coordinates for the Schiffler point are

[1]

or, equivalently,

where a, b, c denote the side lengths of triangle ABC.

References

  1. ^ a b Emelyanov, Lev; Emelyanova, Tatiana (2003). "A note on the Schiffler point". Forum Geometricorum. 3: 113–116. MR 2004116. Archived from the original on July 6, 2003.

Further reading