Small integral membrane protein 20 (SMIM20) is a protein that in humans is encoded by the SMIM20 gene.[5] SMIM20 acts as a prohormone to the peptide hormone phoenixin (PNX) which was discovered for the first time in 2013 in rodent sensory ganglia.[6] Two alternate cleavage sites within SMIM20 results in two different phoenixin products, Phoenixin-14 (PNX-14) and Phoenixin-20 (PNX-20). [7]
In the study of the evolution of nervous systems, SMIM20 together with NUCB2 have been found to have deep homology across all lineages that preceded creatures with central nervous systems, bilaterians, cnidarians, ctenophores, and sponges as well as in choanoflagellates.[8][9]
Receptor signaling
Recent studies have found that GPR173, a previously orphaned GPCR, may act as a receptor for PNX-14 and PNX-20.[10][11][12]
See Also
References
- ^ a b c GRCh38: Ensembl release 89: ENSG00000250317 – Ensembl, May 2017
- ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000061461 – Ensembl, May 2017
- ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ "Entrez Gene: Small integral membrane protein 20". Retrieved 2014-02-05.
- ^ Yosten GL, Lyu RM, Hsueh AJ, Avsian-Kretchmer O, Chang JK, Tullock CW, et al. (February 2013). "A novel reproductive peptide, phoenixin". Journal of Neuroendocrinology. 25 (2): 206–215. doi:10.1111/j.1365-2826.2012.02381.x. PMC 3556183. PMID 22963497.
- ^ Mcilwraith EK, Belsham DD (May 2018). "Phoenixin: uncovering its receptor, signaling and functions". Acta Pharmacologica Sinica. 39 (5): 774–778. doi:10.1038/aps.2018.13. ISSN 1745-7254. PMC 5943909. PMID 29671415.
- ^ Yañez-Guerra LA, Thiel D, Jékely G (April 2022). O'Connell M (ed.). "Premetazoan Origin of Neuropeptide Signaling". Molecular Biology and Evolution. 39 (4): msac051. doi:10.1093/molbev/msac051. PMC 9004410. PMID 35277960.
- ^ Callier V (3 June 2022). "Brain-Signal Proteins Evolved Before Animals Did". Quanta Magazine. Retrieved 2022-06-03.
- ^ Mcilwraith EK, Belsham DD (May 2018). "Phoenixin: uncovering its receptor, signaling and functions". Acta Pharmacologica Sinica. 39 (5): 774–778. doi:10.1038/aps.2018.13. ISSN 1745-7254. PMC 5943909. PMID 29671415.
- ^ Treen AK, Luo V, Belsham DD (2016-08-01). "Phoenixin Activates Immortalized GnRH and Kisspeptin Neurons Through the Novel Receptor GPR173". Molecular Endocrinology. 30 (8). Baltimore, Md.: 872–888. doi:10.1210/me.2016-1039. ISSN 0888-8809. PMC 5414621. PMID 27268078.
- ^ Stein LM, Tullock CW, Mathews SK, Garcia-Galiano D, Elias CF, Samson WK, et al. (September 2016). "Hypothalamic action of phoenixin to control reproductive hormone secretion in females: importance of the orphan G protein-coupled receptor Gpr173". American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 311 (3): R489 – R496. doi:10.1152/ajpregu.00191.2016. ISSN 0363-6119. PMC 5142227. PMID 27440717.
Further reading