Ooguri–Vafa metric
In differential geometry, the Ooguri–Vafa metric is a four-dimensional Hyperkähler metric. The Ooguri–Vafa metric is named after Hirosi Ooguri and Cumrun Vafa, who first described it in 1996 using the Gibbons–Hawking ansatz. Another construction was given by Davide Gaiotto, Gregory Moore and Andrew Neitzke in 2008.
Definition
The Ooguri–Vafa metric is defined on the four-dimensional total spaces of principal U(1)-bundles over open subsets of the three-dimensional euclidean space .[1] In particular the whole space results in .[2]
Define the elliptical fibers with and and let be the string coupling constant. Further define the scaled spatial coordinate
- .[3]
The metric of Ooguri and Vafa has the form[4]
where and
and is a potential which gets modified from the form .
Requirements for the potential
There are 5 requirements for the potential :[5]
- should be a function of only and , i.e. for .
- For the metric to be a hyperkähler metric, the following conditions must be met:
- where the differential operator is defined as follows:
- If then one obtains the classical potential defined above:
- The The metric should be periodic, but not translation-invariant, in the -direction with period , i.e. .
- The singularities of can be removed by a suitable coordinate transformation.
There exists a unique solution which satisfies all these conditions[6]
for a constant . Using Poisson's formula on gets
where is a constant and is the modified Bessel function.
Literature
- Ooguri, Hirosi; Vafa, Cumrun (1996-08-12). "Summing up D-Instantons". Physical Review Letters. 77 (16): 3296–3298. arXiv:hep-th/9608079. doi:10.1103/PhysRevLett.77.3296. PMID 10062185.
- Gaiotto, Davide; Moore, Gregory W.; Neitzke, Andrew (2008-07-29). "Four-dimensional wall-crossing via three-dimensional field theory". Communications in Mathematical Physics. 299: 163–224. arXiv:0807.4723. doi:10.1007/s00220-010-1071-2.
- Chan, Kwokwai (2009-09-19). "The Ooguri-Vafa metric, holomorphic discs and wall-crossing". Mathematical Research Letters. 17 (3): 401–414. arXiv:0909.3608. doi:10.4310/MRL.2010.v17.n3.a3.
- Foscolo, Lorenzo. "Notes on the Ooguri-Vafa metric" (PDF).
References
- ^ Lorenzo, p. 1
- ^ Gaiotto, Moore & Neitzke 2008, p. 7
- ^ Ooguri, Hirosi; Vafa, Cumrun (1996). "Summing up D-Instantons". Phys. Rev. Lett. 77 (16): 3. arXiv:hep-th/9608079. doi:10.1103/PhysRevLett.77.3296.
- ^ Ooguri, Hirosi; Vafa, Cumrun. "Summing up D-Instantons". Phys. Rev. Latt: 4.
- ^ Ooguri, Hirosi; Vafa, Cumrun (1996). "Summing up D-Instantons". Phys. Rev. Lett. 77 (16): 4–5. arXiv:hep-th/9608079. doi:10.1103/PhysRevLett.77.3296.
- ^ Ooguri, Hirosi; Vafa, Cumrun (1996). "Summing up D-Instantons". Phys. Rev. Lett. 77 (16). American Physical Society: 5. arXiv:hep-th/9608079. doi:10.1103/PhysRevLett.77.3296.