Norm (abelian group)
In mathematics, specifically abstract algebra, if is an (abelian) group with identity element then is said to be a norm on if:
- Positive definiteness: ,
- Subadditivity: ,
- Inversion (Symmetry): .[1][2]: §5 & §10.1
An alternative, stronger definition of a norm on requires
The norm is discrete if there is some real number such that whenever .
Free abelian groups
An abelian group is a free abelian group if and only if it has a discrete norm.[3][4]: Th. 3.10.3
References
- ^ Bingham, N.H.; Ostaszewski, A.J. (2010). "Normed versus topological groups: Dichotomy and duality". Dissertationes Mathematicae. 472: 4. doi:10.4064/dm472-0-1.
- ^ Deza, Michel; Deza, Elena (2016). Encyclopedia of Distances (4 ed.). Berlin, Heidelberg: Springer. ISBN 978-3-662-52844-0.
- ^ a b Steprāns, Juris (1985), "A characterization of free abelian groups", Proceedings of the American Mathematical Society, 93 (2): 347–349, doi:10.2307/2044776, JSTOR 2044776, MR 0770551
- ^ a b Fuchs, László (2015). Abelian Groups (1st ed.). Cham: Springer. ISBN 978-3-319-19422-6.