Modified Kumaraswamy |
---|
Probability density function |
Cumulative distribution function |
Parameters |
(real)
(real) |
---|
Support |
 |
---|
PDF |
 |
---|
CDF |
 |
---|
Quantile |
 |
---|
Mean |
![{\displaystyle \alpha \beta \mathrm {e} ^{\alpha }\sum _{i=0}^{\infty }(-1)^{i}{\begin{pmatrix}\beta -1\\i\end{pmatrix}}\mathrm {e} ^{\alpha i}\Gamma \left[0,\left(i+1\right)\alpha \right]}](./3b868d828fa0e956bc936f6cbd30969dd8644f3d.svg) |
---|
Variance |
![{\displaystyle \alpha ^{2}\beta e^{\alpha }\sum _{i=0}^{\infty }(-1)^{i}{\begin{pmatrix}\beta -1\\i\end{pmatrix}}\mathrm {e} ^{\alpha i}(i+1)\Gamma \left[-1,\left(i+1\right)\alpha \right]-\mu ^{2}}](./171dbb7889ae741f09303efe30ab536495de3fc0.svg) |
---|
MGF |
![{\displaystyle \alpha \beta e^{\alpha }\sum _{i=0}^{\infty }(-1)^{i}{\begin{pmatrix}\beta -1\\i\end{pmatrix}}\mathrm {e} ^{\alpha i}(\alpha +\alpha i)^{h-1}\Gamma \left[1-h,\left(i+1\right)\alpha \right]}](./b133d8af46e2f92d69435bf00a9b654e87ce7861.svg) |
---|
In probability theory, the Modified Kumaraswamy (MK) distribution is a two-parameter continuous probability distribution defined on the interval (0,1). It serves as an alternative to the beta and Kumaraswamy distributions for modeling double-bounded random variables. The MK distribution was originally proposed by Sagrillo, Guerra, and Bayer [1] through a transformation of the Kumaraswamy distribution.
Its density exhibits an increasing-decreasing-increasing shape, which is not characteristic of the beta or Kumaraswamy distributions. The motivation for this proposal stemmed from applications in hydro-environmental problems.
Definitions
Probability density function
The probability density function of the Modified Kumaraswamy distribution is

where
,
and
are shape parameters.
Cumulative distribution function
The cumulative distribution function of Modified Kumaraswamy is given by

where
,
and
are shape parameters.
Quantile function
The inverse cumulative distribution function (quantile function) is

Properties
Moments
The hth statistical moment of X is given by:
![{\displaystyle {\textrm {E}}\left(X^{h}\right)=\alpha \beta \mathrm {e} ^{\alpha }\sum _{i=0}^{\infty }(-1)^{i}{\begin{pmatrix}\beta -1\\i\end{pmatrix}}\mathrm {e} ^{\alpha i}(\alpha +\alpha i)^{h-1}\Gamma \left[1-h,\left(i+1\right)\alpha \right]}](./bf5798ffa1289b40fa707075d068b8215e5153fd.svg)
Mean and Variance
Measure of central tendency, the mean
of X is:
![{\displaystyle \mu ={\text{E}}(X)=\alpha \beta \mathrm {e} ^{\alpha }\sum _{i=0}^{\infty }(-1)^{i}{\begin{pmatrix}\beta -1\\i\end{pmatrix}}\mathrm {e} ^{\alpha i}\Gamma \left[0,\left(i+1\right)\alpha \right]}](./4b93579597d8e80e5b6259cb74d9880b220595a7.svg)
And its variance
:
![{\displaystyle \sigma ^{2}={\text{E}}(X^{2})=\alpha ^{2}\beta \mathrm {e} ^{\alpha }\sum _{i=0}^{\infty }(-1)^{i}{\begin{pmatrix}\beta -1\\i\end{pmatrix}}\mathrm {e} ^{\alpha i}(i+1)\Gamma \left[-1,\left(i+1\right)\alpha \right]-\mu ^{2}}](./91105bdb721a4cbabdc9bed1c519568683051bf1.svg)
Parameter estimation
Sagrillo, Guerra, and Bayer[1] suggested using the maximum likelihood method for parameter estimation of the MK distribution. The log-likelihood function for the MK distribution, given a sample
, is:

The components of the score vector
are

and

The MLEs of
, denoted by
, are obtained as the simultaneous solution of
, where
is a two-dimensional null vector.
- If
, then
(Kumaraswamy distribution)
- If
, then
Exponentiated exponential (EE) distribution[2]
- If
, then
. (Beta distribution)
- If
, then
.
- If
, then
(Exponential distribution).
Applications
The Modified Kumaraswamy distribution was introduced for modeling hydro-environmental data. It has been shown to outperform the Beta and Kumaraswamy distributions for the useful volume of water reservoirs in Brazil.[1] It was also used in the statistical estimation of the stress-strength reliability of systems.[3]
See also
References
- ^ a b c Sagrillo, M.; Guerra, R. R.; Bayer, F. M. (2021). "Modified Kumaraswamy distributions for double bounded hydro-environmental data". Journal of Hydrology. 603. Bibcode:2021JHyd..60327021S. doi:10.1016/j.jhydrol.2021.127021.
- ^ Gupta, R.D.; Kundu, D (1999). "Theory & Methods: Generalized exponential distributions". Australian & New Zealand Journal of Statistics. 41 (2): 173–188. doi:10.1111/1467-842X.00072.
- ^ Kohansal, Akram; Pérez-González, Carlos J; Fernández, Arturo J (2023). "Inference on the stress-strength reliability of multi-component systems based on progressive first failure censored samples". Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability. 238 (5): 1053–1073. doi:10.1177/1748006X231188075.
External links