NBOMe-mescaline

NBOMe-mescaline
Clinical data
Other namesMescaline-NBOMe; 345-NBOMe; M-NBOMe; NBOMe-M; N-(2-Methoxybenzyl)-3,4,5-trimethoxyphenethylamine; 3,4,5-Trimethoxy-N-(2-methoxybenzyl)phenethylamine
Routes of
administration
Oral, others[1]
Drug classSerotonin 5-HT2A receptor agonist; Serotonergic psychedelic; Hallucinogen
ATC code
  • None
Legal status
Legal status
  • DE: NpSG (Industrial and scientific use only)
  • UK: Class A
  • US: Unscheduled
Pharmacokinetic data
Duration of action~2–3 hours[1]
Identifiers
  • N-(2-Methoxybenzyl)-2-(3,4,5-trimethoxyphenyl)ethan-1-amine
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
FormulaC19H25NO4
Molar mass331.412 g·mol−1
3D model (JSmol)
  • COC1=CC(CCNCC2=C(OC)C=CC=C2)=CC(OC)=C1OC.Cl
  • InChI=1S/C19H25NO4/c1-21-16-8-6-5-7-15(16)13-20-10-9-14-11-17(22-2)19(24-4)18(12-14)23-3/h5-8,11-12,20H,9-10,13H2,1-4H3 Y
  • Key:USPSMWCGHVXKMN-UHFFFAOYSA-N Y

NBOMe-mescaline, also known as mescaline-NBOMe, M-NBOMe, or N-(2-methoxybenzyl)-3,4,5-trimethoxyphenethylamine, is a serotonin receptor agonist and putative psychedelic drug of the phenethylamine, scaline, and N-benzylphenethylamine (NBOMe) families.[1][2][3] It is the N-(2-methoxybenzyl) derivative of mescaline.[1][2][3]

Use and effects

The active dose range of NBOMe-mescaline in humans has not been clearly reported and hence is unknown.[4] This is in notable contrast to many other NBOMe drugs.[4]

However, Daniel Trachsel has reported that NBOMe-mescaline at an oral dose of 50 mg three times separated by 1.5 hours each (150 mg total over about 4.5 hours) produced hallucinogenic effects and was somewhat more potent than mescaline, but only lasted 5 or 6 hours with the employed dosing scheme.[1] It was estimated that the duration if a single dose were to be taken would probably be about 2 to 3 hours.[1] NBOMe drugs are known to have very poor oral bioavailability, so NBOMe-mescaline could be much more potent by parenteral routes such as sublingual or intranasal administration.[1]

In terms of its effects, NBOMe-mescaline was described as somehow shifting the axis of the field of vision.[1] Its effects, or rather after-effects, were described as unpleasant.[1]

Interactions

Pharmacology

Pharmacodynamics

NBOMe-mescaline activities
Target Affinity (Ki, nM)
5-HT1A 21,000
5-HT1B ND
5-HT1D ND
5-HT1E ND
5-HT1F ND
5-HT2A 140 (Ki)
3,000 (EC50Tooltip half-maximal effective concentration)
33% (EmaxTooltip maximal efficacy)
5-HT2B ND (Ki)
>20,000 (EC50)
IA (Emax)
5-HT2C 640 (Ki)
ND (EC50)
ND (Emax)
5-HT3 ND
5-HT4 ND
5-HT5A ND
5-HT6 ND
5-HT7 ND
α1A 3,000
α1B, α1D ND
α2A 810
α2B, α2C ND
β1β3 ND
D1 >14,000
D2 9,600
D3 >17,000
D4, D5 ND
H1 14,000
H2H4 ND
M1M5 ND
I1 ND
σ1, σ2 ND
ORs ND
TAAR1Tooltip Trace amine-associated receptor 1 >20,000 (Ki) (mouse)
13,000 (Ki) (rat)
>30,000 (EC50) (mouse)
>30,000 (EC50) (rat)
>10,000 (EC50) (human)
IA (Emax) (mouse)
IA (Emax) (rat)
SERTTooltip Serotonin transporter 24,000 (Ki)
85,000 (IC50Tooltip half-maximal inhibitory concentration)
ND (EC50)
NETTooltip Norepinephrine transporter 46,000 (Ki)
89,000 (IC50)
ND (EC50)
DATTooltip Dopamine transporter >30,000 (Ki)
449,000 (IC50)
ND (EC50)
Notes: The smaller the value, the more avidly the drug binds to the site. All proteins are human unless otherwise specified. Refs: [5][3][6]

NBOMe-mescaline is a partial agonist of serotonin receptors, with a 5-HT2A pKi originally reported as 7.3 (i.e. Ki of approximately 50 nM),[2] though more modern techniques assayed it as 140 nM at 5-HT2A and 640 nM at 5-HT2C, making it one of the least potent compounds among the N-benzylphenethylamines.[3] Nonetheless, it is 68-fold more potent than mescaline as a serotonin 5-HT2A receptor agonist in vitro.[2] However, in another study, it was only about 3.3-fold more potent as a serotonin 5-HT2A receptor agonist compared to mescaline in vitro.[3] The interactions of NBOMe-mescaline with various receptors and transporters have been characterized and described.[3]

Chemistry

Solubility of the hydrochloride salt: ~5 mg/ml in Phosphate Buffered Saline (PBS) @ pH 7.2; ~10 mg/ml in ethanol & DMF; ~20 mg/ml in DMSO.[7]

Synthesis

NBOMe-mescaline can be synthesized from mescaline and 2-methoxybenzaldehyde, via reductive alkylation. That can be done stepwise by first making the imine and then reducing the formed imine with sodium borohydride, or by direct reaction with sodium triacetoxyborohydride. An alternative production method which removes the need to obtain the illegal compound mescaline as an isolated precursor can be achieved via a one-pot reaction utilizing 3,4,5-trimethoxyphenylacetonitrile with Lithium Aluminium Hydride as a reducing agent.

History

NBOMe-mescaline and NBOMe-escaline were first reported in 1999 resulting from research performed at Free University of Berlin concerning their activity as partial agonists at rat vascular 5-HT2A receptors.[2] NBOMe-mescaline was first reported in September 2008 to have been self administered by humans as a psychedelic drug at some unspecified point prior.[8] It first became available as a commodity in the research chemical market in May 2010 several months after a few 25x-NBOMes became available.

Society and culture

NBOMe-mescaline is not listed in the schedules set out by the United Nations' Single Convention on Narcotic Drugs from 1961 nor their Convention on Psychotropic Substances from 1971,[9] so the signatory countries to these international drug control treaties are not required by said treaties to control NBOMe-mescaline.

United Kingdom

This substance is a Class A drug in the United Kingdom as a result of the N-benzylphenethylamine catch-all clause in the Misuse of Drugs Act 1971.[10]

United States

NBOMe-mescaline is not listed in the list of scheduled controlled substances in the USA.[11] It is therefore not scheduled at the federal level in the United States, but it is possible that NBOMe-mescaline could legally be considered an analog of mescaline, and therefore sales or possession could potentially be prosecuted under the Federal Analogue Act.[12]

See also

References

  1. ^ a b c d e f g h i Trachsel D, Lehmann D, Enzensperger C (2013). Phenethylamine: von der Struktur zur Funktion [Phenethylamines: From Structure to Function]. Nachtschatten-Science (in German) (1 ed.). Solothurn: Nachtschatten-Verlag. p. 693. ISBN 978-3-03788-700-4. OCLC 858805226. Aufgrund dieser Resultate blieben weitere Untersuchungen zur N-Alkylierung an Mescalinderivaten aus, bis man schließlich und überraschenderweise herausfand, dass N-Benzylderivate von Phenethylaminen die Affinität zu den Serotonin-5-HT -Rezep- toren deutlich zu steigern vermögen: Pertz, Rheineck und Elz präsentierten für eine Reihe von N-benzylierten Scalin-Derivaten die Serotonin-5-HT -Rezeptor-Affinitäten [551. Für N-(2-Methoxybenzyl)mescalin (M-NBOMe; 24) erhielten sie eine 68fach erhöhte Affi- nitåt (isolierte Rattenschwanzarterie, [3H]Ketanserin Markierung, Abb. 8) im Vergleich zu Mescalin (1). Es stellt sich natürlich die Frage, 0b denn im Menschen die Potenz im Vergleich zu Mes- calin (1) ebenfalls gesteigert ist, 0b N-(2-Methoxybenzyl)mescalin (M-NBOMe; 24) über- haupt eine \X'irkung zeigt, und wenn ja, welche. Ein Einzelversuch (3•50mg; getrennt durch je 1.5h) zeigte, dass die Substanz zwar etwas potenter ist, jedoch nur 5—6 Stunden wirkte, und die Wirkung sich von derjenigen von Mescalin (1) deutlich unterscheidet. Eine Einzeldosis würde demnach vermutlich 2—3h wirken. Die Wirkung schien die Achse des Sichtfeldes ir- gendwie zu verschieben, und die Effekte respektive die Nachwirkungen waren unangenehm. Es sei vermerkt, dass N-benzylierte Phenethylamine sublingual Oder nasal verabreicht of- fenbar um ein Vielfaches potenter Sind, als oral verabreicht. [...] Abb. 8. Das Anbringen eines (2-Methoxybenzyl)-Substituenten an den Stickstoff von Mescalin (1) bewirkt eine drastische Steigerung der Affinität zum 5-HT2A-Rezeptor (PH)Ketanserin markiert) [55).
  2. ^ a b c d e Pertz HH, Rheineck A, Elz S (1999). "N-Benzylated derivatives of the hallucinogenic drugs mescaline and escaline as partial agonists at rat vascular 5-HT2A receptors". Naunyn-Schmiedeberg's Arch Pharmacol. 359 (Suppl 3): R29. Archived from the original on September 25, 2015.
  3. ^ a b c d e f Rickli A, Luethi D, Reinisch J, Buchy D, Hoener MC, Liechti ME (December 2015). "Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs)" (PDF). Neuropharmacology. 99: 546–553. doi:10.1016/j.neuropharm.2015.08.034. PMID 26318099.
  4. ^ a b Luethi D, Liechti ME (October 2018). "Monoamine Transporter and Receptor Interaction Profiles in Vitro Predict Reported Human Doses of Novel Psychoactive Stimulants and Psychedelics". The International Journal of Neuropsychopharmacology. 21 (10): 926–931. doi:10.1093/ijnp/pyy047. PMC 6165951. PMID 29850881. Supplementary Table S2. Dose estimates and data sources for psychedelics.
  5. ^ "Kᵢ Database". PDSP. 21 June 2025. Retrieved 21 June 2025.
  6. ^ Simmler LD, Buchy D, Chaboz S, Hoener MC, Liechti ME (April 2016). "In Vitro Characterization of Psychoactive Substances at Rat, Mouse, and Human Trace Amine-Associated Receptor 1" (PDF). The Journal of Pharmacology and Experimental Therapeutics. 357 (1): 134–144. doi:10.1124/jpet.115.229765. PMID 26791601. Archived from the original (PDF) on 2025-05-09.
  7. ^ Cayman Chemical's Mescaline NBOMe HCl MSDS
  8. ^ 25B-NB (n-Benzyl-2C-B) @ BlueLight.org
  9. ^ "UN International Drug Control Conventions". Archived from the original on 2014-03-17. Retrieved 2015-09-29.
  10. ^ "The Misuse of Drugs Act 1971 (Ketamine etc.) (Amendment) Order 2014". UK Statutory Instruments 2014 No. 1106. www.legislation.gov.uk.
  11. ^ "§1308.11 Schedule I." Archived from the original on 2009-08-27. Retrieved 2015-09-21.
  12. ^ Erowid Analog Law Vault : Federal Controlled Substance Analogue Act Summary