Unsolved problem in mathematics
For how many points is it always possible to projectively transform the points into convex position?
The McMullen problem is an open problem in discrete geometry named after Peter McMullen.
Statement
In 1972, David G. Larman wrote about the following problem:[1]
Determine the largest number

such that for any given

points in
general position in the

-dimensional affine space

there is a
projective transformation mapping these points into
convex position (so they form the vertices of a
convex polytope).
Larman credited the problem to a private communication by Peter McMullen.
Using the Gale transform, this problem can be reformulated as:
Determine the smallest number

such that for every set of

points

in linearly general position on the sphere

it is possible to choose a set

where

for

, such that every open hemisphere of

contains at least two members of

.
The numbers
of the original formulation of the McMullen problem and
of the Gale transform formulation are connected by the relationships
Partition into nearly-disjoint hulls
Also, by simple geometric observation, it can be reformulated as:
Determine the smallest number

such that for every set

of

points in

there exists a
partition of

into two sets

and

with
The relation between
and
is
Projective duality
The equivalent projective dual statement to the McMullen problem is to determine the largest number
such that every set of
hyperplanes in general position in d-dimensional real projective space form an arrangement of hyperplanes in which one of the cells is bounded by all of the hyperplanes.
Results
This problem is still open. However, the bounds of
are in the following results:
- David Larman proved in 1972 that[1]
- Michel Las Vergnas proved in 1986 that[2]
- Jorge Luis Ramírez Alfonsín proved in 2001 that[3]
The conjecture of this problem is that
. This has been proven for
.[1][4]
References
- ^ a b c Larman, D. G. (1972), "On sets projectively equivalent to the vertices of a convex polytope", The Bulletin of the London Mathematical Society, 4: 6–12, doi:10.1112/blms/4.1.6, MR 0307040
- ^ Las Vergnas, Michel (1986), "Hamilton paths in tournaments and a problem of McMullen on projective transformations in
", The Bulletin of the London Mathematical Society, 18 (6): 571–572, doi:10.1112/blms/18.6.571, MR 0859948
- ^ Ramírez Alfonsín, J. L. (2001), "Lawrence oriented matroids and a problem of McMullen on projective equivalences of polytopes", European Journal of Combinatorics, 22 (5): 723–731, doi:10.1006/eujc.2000.0492, MR 1845496
- ^ Forge, David; Las Vergnas, Michel; Schuchert, Peter (2001), "10 points in dimension 4 not projectively equivalent to the vertices of a convex polytope", Combinatorial geometries (Luminy, 1999), European Journal of Combinatorics, 22 (5): 705–708, doi:10.1006/eujc.2000.0490, MR 1845494