Expression
|
Curve definition
|
Variables
|
Description
|
Linear transformations
|
![{\displaystyle L[y]=y^{(n)}}](./55748cdb64e2e70170550b1601827405a7391b16.svg) |
|
|
Derivative of nth order
|
![{\displaystyle L[y]=\int _{a}^{t}y\,dt}](./bb616ec3149c278d4ed4d471906c2f3e485248a6.svg) |
Cartesian |

 |
Integral, area
|
![{\displaystyle L[y]=y\circ f}](./adf8e1a8de11d2b9a58113939186edfd36eb5b78.svg) |
|
|
Composition operator
|
![{\displaystyle L[y]={\frac {y\circ t+y\circ -t}{2}}}](./4053efbb3a2417b0187252ce8ce11943d1811df1.svg) |
|
|
Even component
|
![{\displaystyle L[y]={\frac {y\circ t-y\circ -t}{2}}}](./aea9dbfed39f54e300c1b0ecb00212a12c0bb5d8.svg) |
|
|
Odd component
|
![{\displaystyle L[y]=y\circ (t+1)-y\circ t=\Delta y}](./a59c37d0103cd9e45f3008be15be307a2121318b.svg) |
|
|
Difference operator
|
![{\displaystyle L[y]=y\circ (t)-y\circ (t-1)=\nabla y}](./285cc671ff18fcea194db0b07bef7943c5cc718f.svg) |
|
|
Backward difference (Nabla operator)
|
![{\displaystyle L[y]=\sum y=\Delta ^{-1}y}](./b2734b315faf5301c1b49a3d1920dd6b1bb4b378.svg) |
|
|
Indefinite sum operator (inverse operator of difference)
|
![{\displaystyle L[y]=-(py')'+qy}](./ec732fb50af69f011ca9eca0fc1fc8156cfc954c.svg) |
|
|
Sturm–Liouville operator
|
Non-linear transformations
|
![{\displaystyle F[y]=y^{[-1]}}](./e505c0ad5eebe33b1d91e82cada72c95c09d04c9.svg) |
|
|
Inverse function
|
![{\displaystyle F[y]=t\,y'^{[-1]}-y\circ y'^{[-1]}}](./5e3ef79233c2a76b9e7a6b2fe1ab9bd690af7e5a.svg) |
|
|
Legendre transformation
|
![{\displaystyle F[y]=f\circ y}](./1e5c7044beca35c385f28f9684ef56ccedcb4fc2.svg) |
|
|
Left composition
|
![{\displaystyle F[y]=\prod y}](./6db0139615cdc804309a1e7360c50e6aeae0256e.svg) |
|
|
Indefinite product
|
![{\displaystyle F[y]={\frac {y'}{y}}}](./be39d46a4b51569e8fd4e481ed2935f4ae3e2197.svg) |
|
|
Logarithmic derivative
|
![{\displaystyle F[y]={\frac {ty'}{y}}}](./33bad35cb3771f86c734f0123676152bae90fde6.svg) |
|
|
Elasticity
|
![{\displaystyle F[y]={y''' \over y'}-{3 \over 2}\left({y'' \over y'}\right)^{2}}](./82429a931a7be02e43c48a978c443a08f7563a1f.svg) |
|
|
Schwarzian derivative
|
![{\displaystyle F[y]=\int _{a}^{t}|y'|\,dt}](./2759c4bc022e78e98f4215212344e0abfa4f474d.svg) |
|
|
Total variation
|
![{\displaystyle F[y]={\frac {1}{t-a}}\int _{a}^{t}y\,dt}](./c5dbf8b880776c6738161e718a19a80cb010d6f8.svg) |
|
|
Arithmetic mean
|
![{\displaystyle F[y]=\exp \left({\frac {1}{t-a}}\int _{a}^{t}\ln y\,dt\right)}](./4f002952416bda45b3935e147ad3dbe8a88423e6.svg) |
|
|
Geometric mean
|
![{\displaystyle F[y]=-{\frac {y}{y'}}}](./7b744a33e05acd24dc342902fc4435f9b98cc02b.svg) |
Cartesian |

 |
Subtangent
|
![{\displaystyle F[x,y]=-{\frac {yx'}{y'}}}](./cf503f7c4cfe9a01ed4600ce99056a44c0ddcbb5.svg) |
Parametric Cartesian |

|
![{\displaystyle F[r]=-{\frac {r^{2}}{r'}}}](./6b8c3e99b9a9d37d6709af9ebc75662c4894e1f9.svg) |
Polar |

|
![{\displaystyle F[r]={\frac {1}{2}}\int _{a}^{t}r^{2}dt}](./05bffb44214252eaa080593550c1fadb19f401a1.svg) |
Polar |

 |
Sector area
|
![{\displaystyle F[y]=\int _{a}^{t}{\sqrt {1+y'^{2}}}\,dt}](./f7f5075734f6fe703a7580c22819a9bdc4fd8628.svg) |
Cartesian |

 |
Arc length
|
![{\displaystyle F[x,y]=\int _{a}^{t}{\sqrt {x'^{2}+y'^{2}}}\,dt}](./4a6ca40e6175c2bb3c7322c838a57f33a2f2ec39.svg) |
Parametric Cartesian |

|
![{\displaystyle F[r]=\int _{a}^{t}{\sqrt {r^{2}+r'^{2}}}\,dt}](./6c184b7ab8977f6a6edc027a9e1acdada1974ea0.svg) |
Polar |

|
![{\displaystyle F[y]=\int _{a}^{t}{\sqrt[{3}]{y''}}\,dt}](./0e29ec01bfa19bfb818eed88beb5eeebea6dbc7d.svg) |
Cartesian |

 |
Affine arc length
|
![{\displaystyle F[x,y]=\int _{a}^{t}{\sqrt[{3}]{x'y''-x''y'}}\,dt}](./47508e30fcd4d476900960eb4f84b3c1295c0ae7.svg) |
Parametric Cartesian |

|
![{\displaystyle F[x,y,z]=\int _{a}^{t}{\sqrt[{3}]{z'''(x'y''-y'x'')+z''(x'''y'-x'y''')+z'(x''y'''-x'''y'')}}dt}](./366fb346e65a188ad374a17d1edc947518cafc87.svg) |
Parametric Cartesian |


|
![{\displaystyle F[y]={\frac {y''}{(1+y'^{2})^{3/2}}}}](./2733d361692921c78d8491e12ff0d3975e46672e.svg) |
Cartesian |

 |
Curvature
|
![{\displaystyle F[x,y]={\frac {x'y''-y'x''}{(x'^{2}+y'^{2})^{3/2}}}}](./0092d291416fcd260b739fa7015c28619ee93702.svg) |
Parametric Cartesian |

|
![{\displaystyle F[r]={\frac {r^{2}+2r'^{2}-rr''}{(r^{2}+r'^{2})^{3/2}}}}](./dfa7d7dbbee040a4d5826ba4ab9f7cb82ce65a18.svg) |
Polar |

|
![{\displaystyle F[x,y,z]={\frac {\sqrt {(z''y'-z'y'')^{2}+(x''z'-z''x')^{2}+(y''x'-x''y')^{2}}}{(x'^{2}+y'^{2}+z'^{2})^{3/2}}}}](./5207fd18045bcdfa79d3df3e0f09fea7d962d443.svg) |
Parametric Cartesian |


|
![{\displaystyle F[y]={\frac {1}{3}}{\frac {y''''}{(y'')^{5/3}}}-{\frac {5}{9}}{\frac {y'''^{2}}{(y'')^{8/3}}}}](./0e7a3650eaa04be655adc42c3346eb29358961ee.svg) |
Cartesian |

 |
Affine curvature
|
![{\displaystyle F[x,y]={\frac {x''y'''-x'''y''}{(x'y''-x''y')^{5/3}}}-{\frac {1}{2}}\left[{\frac {1}{(x'y''-x''y')^{2/3}}}\right]''}](./3a69d739b8216cae91fad1ca47b9e723093682d8.svg) |
Parametric Cartesian |

|
![{\displaystyle F[x,y,z]={\frac {z'''(x'y''-y'x'')+z''(x'''y'-x'y''')+z'(x''y'''-x'''y'')}{(x'^{2}+y'^{2}+z'^{2})(x''^{2}+y''^{2}+z''^{2})}}}](./b2173260d52b59f35d1d713a8378669f8e5a494b.svg) |
Parametric Cartesian |


 |
Torsion of curves
|
![{\displaystyle X[x,y]={\frac {y'}{yx'-xy'}}}](./b267261ce0de1ba0a6ca53134308e5a263da24d1.svg)
![{\displaystyle Y[x,y]={\frac {x'}{xy'-yx'}}}](./547f7562b2770e9c54b89f99e4b9ad2b1d9ede0f.svg) |
Parametric Cartesian |

 |
Dual curve (tangent coordinates)
|
![{\displaystyle X[x,y]=x+{\frac {ay'}{\sqrt {x'^{2}+y'^{2}}}}}](./e7049a1a66ae0e3a174a1953af510094495b5a2e.svg)
![{\displaystyle Y[x,y]=y-{\frac {ax'}{\sqrt {x'^{2}+y'^{2}}}}}](./c7b555b5ef64340d7b8110451e067703a405d379.svg) |
Parametric Cartesian |

 |
Parallel curve
|
![{\displaystyle X[x,y]=x+y'{\frac {x'^{2}+y'^{2}}{x''y'-y''x'}}}](./863007693180945db748fccf523a900cd172d85d.svg)
![{\displaystyle Y[x,y]=y+x'{\frac {x'^{2}+y'^{2}}{y''x'-x''y'}}}](./7b73ec650428cdcc8f03cb9444aee9b49b6dcf05.svg) |
Parametric Cartesian |

 |
Evolute
|
![{\displaystyle F[r]=t(r'\circ r^{[-1]})}](./a3562fadfb34e7d19384e119e1f01f1d57ee84b2.svg) |
Intrinsic |

|
![{\displaystyle X[x,y]=x-{\frac {x'\int _{a}^{t}{\sqrt {x'^{2}+y'^{2}}}\,dt}{\sqrt {x'^{2}+y'^{2}}}}}](./203e22b2482eac10aaea0446f9a3e69e82db9674.svg)
![{\displaystyle Y[x,y]=y-{\frac {y'\int _{a}^{t}{\sqrt {x'^{2}+y'^{2}}}\,dt}{\sqrt {x'^{2}+y'^{2}}}}}](./b9f2233dc9b36793a05d1afd06e88265b393567b.svg) |
Parametric Cartesian |

 |
Involute
|
![{\displaystyle X[x,y]={\frac {(xy'-yx')y'}{x'^{2}+y'^{2}}}}](./db71b35d67e2606dcf3a05acce73dc9193767cb6.svg)
![{\displaystyle Y[x,y]={\frac {(yx'-xy')x'}{x'^{2}+y'^{2}}}}](./39388d40e20824a70c17f7a32237033623ba7439.svg) |
Parametric Cartesian |

 |
Pedal curve with pedal point (0;0)
|
![{\displaystyle X[x,y]={\frac {(x'^{2}-y'^{2})y'+2xyx'}{xy'-yx'}}}](./b5c924853b4907ed4da8a2ac246d9580e8bc44f8.svg)
![{\displaystyle Y[x,y]={\frac {(x'^{2}-y'^{2})x'+2xyy'}{xy'-yx'}}}](./79fe316c48155e6f92993f1e3c1393c47e30699c.svg) |
Parametric Cartesian |

 |
Negative pedal curve with pedal point (0;0)
|
![{\displaystyle X[y]=\int _{a}^{t}\cos \left[\int _{a}^{t}{\frac {1}{y}}\,dt\right]dt}](./935c78f92c71c500905f0e5eb20097dbffb1f5d0.svg)
![{\displaystyle Y[y]=\int _{a}^{t}\sin \left[\int _{a}^{t}{\frac {1}{y}}\,dt\right]dt}](./5ed7d68b49a43d3e04780d4f006de948ae7216e1.svg) |
Intrinsic |

 |
Intrinsic to Cartesian transformation
|
Metric functionals
|
![{\displaystyle F[y]=\|y\|={\sqrt {\int _{E}y^{2}\,dt}}}](./4017443e893dd3adb4e88cc75417d5b01ccc16e0.svg) |
|
|
Norm
|
![{\displaystyle F[x,y]=\int _{E}xy\,dt}](./802878f8dc672ed389e2eb52e0260cbedbf0f738.svg) |
|
|
Inner product
|
![{\displaystyle F[x,y]=\arccos \left[{\frac {\int _{E}xy\,dt}{{\sqrt {\int _{E}x^{2}\,dt}}{\sqrt {\int _{E}y^{2}\,dt}}}}\right]}](./ab83c107b4f06a04bf00c6b25aea41968897760d.svg) |
|
|
Fubini–Study metric (inner angle)
|
Distribution functionals
|
![{\displaystyle F[x,y]=x*y=\int _{E}x(s)y(t-s)\,ds}](./7eacc479d5118751b7e740e1e4383ee523604d3a.svg) |
|
|
Convolution
|
![{\displaystyle F[y]=\int _{E}y\ln y\,dt}](./a14fdd52adf147b44d54644815af4b7a45ef0c58.svg) |
|
|
Differential entropy
|
![{\displaystyle F[y]=\int _{E}yt\,dt}](./c320e540a14d41266a5d973b60b214075ef63b40.svg) |
|
|
Expected value
|
![{\displaystyle F[y]=\int _{E}\left(t-\int _{E}yt\,dt\right)^{2}y\,dt}](./1324142b0ca262523919913e4949fe2a0a7be9c5.svg) |
|
|
Variance
|