In mathematics, the Lerch transcendent, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Czech mathematician Mathias Lerch, who published a paper about a similar function in 1887.[1] The Lerch transcendent, is given by:
.
It only converges for any real number
, where
, or
, and
.
Special cases
The Lerch transcendent is related to and generalizes various special functions.
The Lerch zeta function is given by:

The Hurwitz zeta function is the special case[3]

The polylogarithm is another special case:[3]

The Riemann zeta function is a special case of both of the above:[3]

The Dirichlet eta function:[3]

The Dirichlet beta function:[3]

The Legendre chi function:[3]

The inverse tangent integral:[4]

The polygamma functions for positive integers n:[5][6]

The Clausen function:[7]

Integral representations
The Lerch transcendent has an integral representation:

The proof is based on using the integral definition of the gamma function to write

and then interchanging the sum and integral. The resulting integral representation converges for
Re(s) > 0, and Re(a) > 0. This analytically continues
to z outside the unit disk. The integral formula also holds if z = 1, Re(s) > 1, and Re(a) > 0; see Hurwitz zeta function.[8][9]
A contour integral representation is given by

where C is a Hankel contour counterclockwise around the positive real axis, not enclosing any of the points
(for integer k) which are poles of the integrand. The integral assumes Re(a) > 0.[10]
Other integral representations
A Hermite-like integral representation is given by

for

and

for

Similar representations include

and

holding for positive z (and more generally wherever the integrals converge). Furthermore,

The last formula is also known as Lipschitz formula.
Identities
For λ rational, the summand is a root of unity, and thus
may be expressed as a finite sum over the Hurwitz zeta function. Suppose
with
and
. Then
and
.

Various identities include:

and

and

Series representations
A series representation for the Lerch transcendent is given by

(Note that
is a binomial coefficient.)
The series is valid for all s, and for complex z with Re(z)<1/2. Note a general resemblance to a similar series representation for the Hurwitz zeta function.[11]
A Taylor series in the first parameter was given by Arthur Erdélyi. It may be written as the following series, which is valid for[12]

![{\displaystyle \Phi (z,s,a)=z^{-a}\left[\Gamma (1-s)\left(-\log(z)\right)^{s-1}+\sum _{k=0}^{\infty }\zeta (s-k,a){\frac {\log ^{k}(z)}{k!}}\right]}](./ae3a9c24d8417a779c07014ddeecc82a705943b2.svg)
If n is a positive integer, then
![{\displaystyle \Phi (z,n,a)=z^{-a}\left\{\sum _{{k=0} \atop k\neq n-1}^{\infty }\zeta (n-k,a){\frac {\log ^{k}(z)}{k!}}+\left[\psi (n)-\psi (a)-\log(-\log(z))\right]{\frac {\log ^{n-1}(z)}{(n-1)!}}\right\},}](./6f97bb2052f7804ca5b0247792e7a427e3f9cee9.svg)
where
is the digamma function.
A Taylor series in the third variable is given by

where
is the Pochhammer symbol.
Series at a = −n is given by

A special case for n = 0 has the following series

where
is the polylogarithm.
An asymptotic series for
![{\displaystyle \Phi (z,s,a)=z^{-a}\Gamma (1-s)\sum _{k=-\infty }^{\infty }[2k\pi i-\log(z)]^{s-1}e^{2k\pi ai}}](./cc6012b9bc8d368cab2f4b45595f1a25bf1ae8e6.svg)
for
and
![{\displaystyle \Phi (-z,s,a)=z^{-a}\Gamma (1-s)\sum _{k=-\infty }^{\infty }[(2k+1)\pi i-\log(z)]^{s-1}e^{(2k+1)\pi ai}}](./0712d558ab9e56585b83e5a320cf89dbcba42cb9.svg)
for
An asymptotic series in the incomplete gamma function

for
The representation as a generalized hypergeometric function is[13]

Asymptotic expansion
The polylogarithm function
is defined as

Let

For
and
, an asymptotic expansion of
for large
and fixed
and
is given by

for
, where
is the Pochhammer symbol.[14]
Let

Let
be its Taylor coefficients at
. Then for fixed
and
,

as
.[15]
Software
The Lerch transcendent is implemented as LerchPhi in Maple and Mathematica, and as lerchphi in mpmath and SymPy.
References
- ^ Lerch, Mathias (1887), "Note sur la fonction
", Acta Mathematica (in French), 11 (1–4): 19–24, doi:10.1007/BF02612318, JFM 19.0438.01, MR 1554747, S2CID 121885446
- ^ a b c d e f Guillera & Sondow 2008, p. 248–249
- ^ Weisstein, Eric W. "Inverse Tangent Integral". mathworld.wolfram.com. Retrieved 2024-10-13.
- ^ The polygamma function has the series representation
which holds for integer values of m > 0 and any complex z not equal to a negative integer.
- ^ Weisstein, Eric W. "Polygamma Function". mathworld.wolfram.com. Retrieved 2024-10-14.
- ^ Weisstein, Eric W. "Clausen Function". mathworld.wolfram.com. Retrieved 2024-10-14.
- ^ Bateman & Erdélyi 1953, p. 27
- ^ Guillera & Sondow 2008, Lemma 2.1 and 2.2
- ^ Bateman & Erdélyi 1953, p. 28
- ^ "The Analytic Continuation of the Lerch Transcendent and the Riemann Zeta Function". 27 April 2020. Retrieved 28 April 2020.
- ^ B. R. Johnson (1974). "Generalized Lerch zeta function". Pacific J. Math. 53 (1): 189–193. doi:10.2140/pjm.1974.53.189.
- ^ Gottschalk, J. E.; Maslen, E. N. (1988). "Reduction formulae for generalized hypergeometric functions of one variable". J. Phys. A. 21 (9): 1983–1998. Bibcode:1988JPhA...21.1983G. doi:10.1088/0305-4470/21/9/015.
- ^ Ferreira, Chelo; López, José L. (October 2004). "Asymptotic expansions of the Hurwitz–Lerch zeta function". Journal of Mathematical Analysis and Applications. 298 (1): 210–224. doi:10.1016/j.jmaa.2004.05.040.
- ^ Cai, Xing Shi; López, José L. (10 June 2019). "A note on the asymptotic expansion of the Lerch's transcendent". Integral Transforms and Special Functions. 30 (10): 844–855. arXiv:1806.01122. doi:10.1080/10652469.2019.1627530. S2CID 119619877.
- Apostol, T. M. (2010), "Lerch's Transcendent", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248..
- Bateman, H.; Erdélyi, A. (1953), Higher Transcendental Functions, Vol. I (PDF), New York: McGraw-Hill. (See § 1.11, "The function Ψ(z,s,v)", p. 27)
- Gradshteyn, Izrail Solomonovich; Ryzhik, Iosif Moiseevich; Geronimus, Yuri Veniaminovich; Tseytlin, Michail Yulyevich; Jeffrey, Alan (2015) [October 2014]. "9.55.". In Zwillinger, Daniel; Moll, Victor Hugo (eds.). Table of Integrals, Series, and Products. Translated by Scripta Technica, Inc. (8 ed.). Academic Press. ISBN 978-0-12-384933-5. LCCN 2014010276.
- Guillera, Jesus; Sondow, Jonathan (2008), "Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent", The Ramanujan Journal, 16 (3): 247–270, arXiv:math.NT/0506319, doi:10.1007/s11139-007-9102-0, MR 2429900, S2CID 119131640. (Includes various basic identities in the introduction.)
- Jackson, M. (1950), "On Lerch's transcendent and the basic bilateral hypergeometric series 2ψ2", J. London Math. Soc., 25 (3): 189–196, doi:10.1112/jlms/s1-25.3.189, MR 0036882.
- Johansson, F.; Blagouchine, Ia. (2019), "Computing Stieltjes constants using complex integration", Mathematics of Computation, 88 (318): 1829–1850, arXiv:1804.01679, doi:10.1090/mcom/3401, MR 3925487, S2CID 4619883.
- Laurinčikas, Antanas; Garunkštis, Ramūnas (2002), The Lerch zeta-function, Dordrecht: Kluwer Academic Publishers, ISBN 978-1-4020-1014-9, MR 1979048.
External links
- Aksenov, Sergej V.; Jentschura, Ulrich D. (2002), C and Mathematica Programs for Calculation of Lerch's Transcendent.
- Ramunas Garunkstis, Home Page (2005) (Provides numerous references and preprints.)
- Garunkstis, Ramunas (2004). "Approximation of the Lerch Zeta Function" (PDF). Lithuanian Mathematical Journal. 44 (2): 140–144. doi:10.1023/B:LIMA.0000033779.41365.a5. S2CID 123059665.
- Kanemitsu, S.; Tanigawa, Y.; Tsukada, H. (2015). "A generalization of Bochner's formula". Kanemitsu, S.; Tanigawa, Y.; Tsukada, H. (2004). "A generalization of Bochner's formula". Hardy-Ramanujan Journal. 27. doi:10.46298/hrj.2004.150.
- Weisstein, Eric W. "Lerch Transcendent". MathWorld.
- Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., eds. (2010), "Lerch's Transcendent", NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.