Kaniadakis statistics (also known as κ-statistics) is a generalization of Boltzmann–Gibbs statistical mechanics,[1] based on a relativistic[2][3][4] generalization of the classical Boltzmann–Gibbs–Shannon entropy (commonly referred to as Kaniadakis entropy or κ-entropy). Introduced by the Greek Italian physicist Giorgio Kaniadakis in 2001,[5] κ-statistical mechanics preserve the main features of ordinary statistical mechanics and have attracted the interest of many researchers in recent years. The κ-distribution is currently considered one of the most viable candidates for explaining complex physical,[6][7] natural or artificial systems involving power-law tailed statistical distributions. Kaniadakis statistics have been adopted successfully in the description of a variety of systems in the fields of cosmology,[8][9][10] astrophysics,[11][12] condensed matter, quantum physics,[13][14] seismology,[15][16] genomics,[17][18] economics,[19][20] epidemiology,[21] and many others.
The mathematical formalism of κ-statistics is generated by κ-deformed functions, especially the κ-exponential function.
κ-exponential function
The Kaniadakis exponential (or κ-exponential) function is a one-parameter generalization of an exponential function, given by:
![{\displaystyle \exp _{\kappa }(x)={\begin{cases}{\Big (}{\sqrt {1+\kappa ^{2}x^{2}}}+\kappa x{\Big )}^{\frac {1}{\kappa }}&{\text{if }}0<\kappa <1.\\[6pt]\exp(x)&{\text{if }}\kappa =0,\\[8pt]\end{cases}}}](./3b550a807ebf81ac97caec61e5e2775d88dbd6ad.svg)
with
.
The κ-exponential for
can also be written in the form:

The first five terms of the Taylor expansion of
are given by:

where the first three are the same as a typical exponential function.
Basic properties
The κ-exponential function has the following properties of an exponential function:







For a real number
, the κ-exponential has the property:
.
κ-logarithm function
The Kaniadakis logarithm (or κ-logarithm) is a relativistic one-parameter generalization of the ordinary logarithm function,
![{\displaystyle \ln _{\kappa }(x)={\begin{cases}{\frac {x^{\kappa }-x^{-\kappa }}{2\kappa }}&{\text{if }}0<\kappa <1,\\[8pt]\ln(x)&{\text{if }}\kappa =0,\\[8pt]\end{cases}}}](./a32fc1de3dde3cd41f739c6fcb538bd7fca9306d.svg)
with
, which is the inverse function of the κ-exponential:

The κ-logarithm for
can also be written in the form:
The first three terms of the Taylor expansion of
are given by:

following the rule

with
, and
![{\displaystyle b_{n}(\kappa )(x)={\begin{cases}1&{\text{if }}n=1,\\[8pt]{\frac {1}{2}}{\Big (}1-\kappa {\Big )}{\Big (}1-{\frac {\kappa }{2}}{\Big )}...{\Big (}1-{\frac {\kappa }{n-1}}{\Big )},\,+\,{\frac {1}{2}}{\Big (}1+\kappa {\Big )}{\Big (}1+{\frac {\kappa }{2}}{\Big )}...{\Big (}1+{\frac {\kappa }{n-1}}{\Big )}&{\text{for }}n>1,\\[8pt]\end{cases}}}](./333698f848f58be159a5aac6f21ae4ae59190ed7.svg)
where
and
. The two first terms of the Taylor expansion of
are the same as an ordinary logarithmic function.
Basic properties
The κ-logarithm function has the following properties of a logarithmic function:







For a real number
, the κ-logarithm has the property:

κ-Algebra
κ-sum
For any
and
, the Kaniadakis sum (or κ-sum) is defined by the following composition law:
,
that can also be written in form:
,
where the ordinary sum is a particular case in the classical limit
:
.
The κ-sum, like the ordinary sum, has the following properties:




The κ-difference
is given by
.
The fundamental property
arises as a special case of the more general expression below:
Furthermore, the κ-functions and the κ-sum present the following relationships:

κ-product
For any
and
, the Kaniadakis product (or κ-product) is defined by the following composition law:
,
where the ordinary product is a particular case in the classical limit
:
.
The κ-product, like the ordinary product, has the following properties:




The κ-division
is given by
.
The κ-sum
and the κ-product
obey the distributive law:
.
The fundamental property
arises as a special case of the more general expression below:

- Furthermore, the κ-functions and the κ-product present the following relationships:


κ-Calculus
κ-Differential
The Kaniadakis differential (or κ-differential) of
is defined by:
.
So, the κ-derivative of a function
is related to the Leibniz derivative through:
,
where
is the Lorentz factor. The ordinary derivative
is a particular case of κ-derivative
in the classical limit
.
κ-Integral
The Kaniadakis integral (or κ-integral) is the inverse operator of the κ-derivative defined through
,
which recovers the ordinary integral in the classical limit
.
κ-Trigonometry
κ-Cyclic Trigonometry
The Kaniadakis cyclic trigonometry (or κ-cyclic trigonometry) is based on the κ-cyclic sine (or κ-sine) and κ-cyclic cosine (or κ-cosine) functions defined by:
,
,
where the κ-generalized Euler formula is
.:
The κ-cyclic trigonometry preserves fundamental expressions of the ordinary cyclic trigonometry, which is a special case in the limit κ → 0, such as:

.
The κ-cyclic tangent and κ-cyclic cotangent functions are given by:

.
The κ-cyclic trigonometric functions become the ordinary trigonometric function in the classical limit
.
κ-Inverse cyclic function
The Kaniadakis inverse cyclic functions (or κ-inverse cyclic functions) are associated to the κ-logarithm:
,
,
,
.
κ-Hyperbolic Trigonometry
The Kaniadakis hyperbolic trigonometry (or κ-hyperbolic trigonometry) is based on the κ-hyperbolic sine and κ-hyperbolic cosine given by:
,
,
where the κ-Euler formula is
.
The κ-hyperbolic tangent and κ-hyperbolic cotangent functions are given by:

.
The κ-hyperbolic trigonometric functions become the ordinary hyperbolic trigonometric functions in the classical limit
.
From the κ-Euler formula and the property
the fundamental expression of κ-hyperbolic trigonometry is given as follows:

κ-Inverse hyperbolic function
The Kaniadakis inverse hyperbolic functions (or κ-inverse hyperbolic functions) are associated to the κ-logarithm:
,
,
,
,
in which are valid the following relations:
,
,
.
The κ-cyclic and κ-hyperbolic trigonometric functions are connected by the following relationships:
,
,
,
,
,
,
,
.
Kaniadakis entropy
The Kaniadakis statistics is based on the Kaniadakis κ-entropy, which is defined through:

where
is a probability distribution function defined for a random variable
, and
is the entropic index.
The Kaniadakis κ-entropy is thermodynamically and Lesche stable[22][23] and obeys the Shannon-Khinchin axioms of continuity, maximality, generalized additivity and expandability.
Kaniadakis distributions
A Kaniadakis distribution (or κ-distribution) is a probability distribution derived from the maximization of Kaniadakis entropy under appropriate constraints. In this regard, several probability distributions emerge for analyzing a wide variety of phenomenology associated with experimental power-law tailed statistical distributions.
κ-Exponential distribution
κ-Gaussian distribution
κ-Gamma distribution
κ-Weibull distribution
κ-Logistic distribution
The Kaniadakis Laplace transform (or κ-Laplace transform) is a κ-deformed integral transform of the ordinary Laplace transform. The κ-Laplace transform converts a function
of a real variable
to a new function
in the complex frequency domain, represented by the complex variable
. This κ-integral transform is defined as:[24]
![{\displaystyle F_{\kappa }(s)={\cal {L}}_{\kappa }\{f(t)\}(s)=\int _{\,0}^{\infty }\!f(t)\,[\exp _{\kappa }(-t)]^{s}\,dt}](./b1a9d32918bf36de2af04f4f232f4daaca51dc4f.svg)
The inverse κ-Laplace transform is given by:
![{\displaystyle f(t)={\cal {L}}_{\kappa }^{-1}\{F_{\kappa }(s)\}(t)={{\frac {1}{2\pi i}}\int _{c-i\infty }^{c+i\infty }\!F_{\kappa }(s)\,{\frac {[\exp _{\kappa }(t)]^{s}}{\sqrt {1+\kappa ^{2}t^{2}}}}\,ds}}](./8682be7b957158b8bd9d2bd17efb0631e8d9e69d.svg)
The ordinary Laplace transform and its inverse transform are recovered as
.
Properties
Let two functions
and
, and their respective κ-Laplace transforms
and
, the following table presents the main properties of κ-Laplace transform:[24]
Properties of the κ-Laplace transform
Property
|
|
|
Linearity
|
|
|
Time scaling
|
|
|
Frequency shifting
|
|
|
Derivative
|
|
|
Derivative
|
|
|
Time-domain integration
|
|
|
|
|
|
|
|
|
Dirac delta-function
|
|
|
Heaviside unit function
|
|
|
Power function
|
|
|
Power function
|
|
|
Power function
|
|
|
The κ-Laplace transforms presented in the latter table reduce to the corresponding ordinary Laplace transforms in the classical limit
.
The Kaniadakis Fourier transform (or κ-Fourier transform) is a κ-deformed integral transform of the ordinary Fourier transform, which is consistent with the κ-algebra and the κ-calculus. The κ-Fourier transform is defined as:[25]
={1 \over {\sqrt {2\,\pi }}}\int \limits _{-\infty }\limits ^{+\infty }f(x)\,\exp _{\kappa }(-x\otimes _{\kappa }\omega )^{i}\,d_{\kappa }x}](./35db873c3459e252e6c0825a5228b6ce1a0a057b.svg)
which can be rewritten as
={1 \over {\sqrt {2\,\pi }}}\int \limits _{-\infty }\limits ^{+\infty }f(x)\,{\exp(-i\,x_{\{\kappa \}}\,\omega _{\{\kappa \}}) \over {\sqrt {1+\kappa ^{2}\,x^{2}}}}\,dx}](./7386e6169be16e8cfb043eae8edd238c1275d0a7.svg)
where
and
. The κ-Fourier transform imposes an asymptotically log-periodic behavior by deforming the parameters
and
in addition to a damping factor, namely
.
The kernel of the κ-Fourier transform is given by:
The inverse κ-Fourier transform is defined as:[25]
={1 \over {\sqrt {2\,\pi }}}\int \limits _{-\infty }\limits ^{+\infty }{\hat {f}}(\omega )\,\exp _{\kappa }(\omega \otimes _{\kappa }x)^{i}\,d_{\kappa }\omega }](./f582874b20fc201b60fd02bfcb9aff3ea95a74de.svg)
Let
, the following table shows the κ-Fourier transforms of several notable functions:[25]
κ-Fourier transform of several functions
|
|
|
Step function
|
|
|
Modulation
|
|
|
Causal -exponential
|
|
|
Symmetric -exponential
|
|
|
Constant
|
|
|
-Phasor
|
|
|
Impuslse
|
|
|
Signum
|
Sgn
|
|
Rectangular
|
|
|
The κ-deformed version of the Fourier transform preserves the main properties of the ordinary Fourier transform, as summarized in the following table.
κ-Fourier properties
|
|
Linearity
|
|
Scaling
|
where and
|
-Scaling
|
|
Complex conjugation
|
|
Duality
|
|
Reverse
|
|
-Frequency shift
|
|
-Time shift
|
|
Transform of -derivative
|
|
-Derivative of transform
|
|
Transform of integral
|
|
-Convolution
|
where
|
Modulation
|
|
The properties of the κ-Fourier transform presented in the latter table reduce to the corresponding ordinary Fourier transforms in the classical limit
.
See also
References
- This article incorporates text available under the CC BY 3.0 license.
- ^ Kaniadakis, G. (2009). "Relativistic entropy and related Boltzmann kinetics". The European Physical Journal A. 40 (3): 275–287. arXiv:0901.1058. Bibcode:2009EPJA...40..275K. doi:10.1140/epja/i2009-10793-6. ISSN 1434-6001. S2CID 119190011.
- ^ Kaniadakis, G. (2002). "Statistical mechanics in the context of special relativity". Physical Review E. 66 (5): 056125. arXiv:cond-mat/0210467. Bibcode:2002PhRvE..66e6125K. doi:10.1103/PhysRevE.66.056125. ISSN 1063-651X. PMID 12513574. S2CID 45635888.
- ^ Kaniadakis, G. (2005). "Statistical mechanics in the context of special relativity. II". Physical Review E. 72 (3): 036108. arXiv:cond-mat/0507311. Bibcode:2005PhRvE..72c6108K. doi:10.1103/PhysRevE.72.036108. ISSN 1539-3755. PMID 16241516. S2CID 18115408.
- ^ Kaniadakis, G. (2011). "Power-law tailed statistical distributions and Lorentz transformations". Physics Letters A. 375 (3): 356–359. arXiv:1110.3944. Bibcode:2011PhLA..375..356K. doi:10.1016/j.physleta.2010.11.057. ISSN 0375-9601. S2CID 118435479.
- ^ Kaniadakis, G. (2001). "Non-linear kinetics underlying generalized statistics". Physica A: Statistical Mechanics and Its Applications. 296 (3): 405–425. arXiv:cond-mat/0103467. Bibcode:2001PhyA..296..405K. doi:10.1016/S0378-4371(01)00184-4. ISSN 0378-4371. S2CID 44275064.
- ^ Kaniadakis, G. (2009). "Maximum entropy principle and power-law tailed distributions". The European Physical Journal B. 70 (1): 3–13. arXiv:0904.4180. Bibcode:2009EPJB...70....3K. doi:10.1140/epjb/e2009-00161-0. ISSN 1434-6028. S2CID 55421804.
- ^ Kaniadakis, G. (2021). "New power-law tailed distributions emerging in κ-statistics (a)". Europhysics Letters. 133 (1): 10002. arXiv:2203.01743. Bibcode:2021EL....13310002K. doi:10.1209/0295-5075/133/10002. ISSN 0295-5075. S2CID 234144356.
- ^ Drepanou, Niki; Lymperis, Andreas; Saridakis, Emmanuel N.; Yesmakhanova, Kuralay (2022-05-16). "Kaniadakis holographic dark energy and cosmology". The European Physical Journal C. 82 (5): 449. arXiv:2109.09181. Bibcode:2022EPJC...82..449D. doi:10.1140/epjc/s10052-022-10415-9. ISSN 1434-6052.
- ^ Hernández-Almada, A; Leon, Genly; Magaña, Juan; García-Aspeitia, Miguel A; Motta, V; Saridakis, Emmanuel N; Yesmakhanova, Kuralay (2022). "Kaniadakis-holographic dark energy: observational constraints and global dynamics". Monthly Notices of the Royal Astronomical Society. 511 (3): 4147–4158. arXiv:2111.00558. doi:10.1093/mnras/stac255. ISSN 0035-8711.
- ^ Luciano, Giuseppe Gaetano (2022-11-24). "Gravity and Cosmology in Kaniadakis Statistics: Current Status and Future Challenges". Entropy. 24 (12): 1712. Bibcode:2022Entrp..24.1712L. doi:10.3390/e24121712. ISSN 1099-4300. PMC 9777509. PMID 36554117.
- ^ Carvalho, J. C.; Silva, R.; do Nascimento Jr., J. D.; De Medeiros, J. R. (2008). "Power law statistics and stellar rotational velocities in the Pleiades". EPL (Europhysics Letters). 84 (5): 59001. arXiv:0903.0836. Bibcode:2008EL.....8459001C. doi:10.1209/0295-5075/84/59001. ISSN 0295-5075. S2CID 7123391.
- ^ Curé, Michel; Rial, Diego F.; Christen, Alejandra; Cassetti, Julia (2014). "A method to deconvolve stellar rotational velocities". Astronomy & Astrophysics. 565: A85. arXiv:1401.1054. Bibcode:2014A&A...565A..85C. doi:10.1051/0004-6361/201323344. ISSN 0004-6361. S2CID 59375612.
- ^ Ourabah, Kamel; Hamici-Bendimerad, Amel Hiba; Tribeche, Mouloud (2015). "Quantum entanglement and Kaniadakis entropy". Physica Scripta. 90 (4): 045101. Bibcode:2015PhyS...90d5101O. doi:10.1088/0031-8949/90/4/045101. ISSN 0031-8949. S2CID 123776127.
- ^ Abreu, Everton M. C.; Ananias Neto, Jorge; Mendes, Albert C. R.; de Paula, Rodrigo M. (2019). "Loop quantum gravity Immirzi parameter and the Kaniadakis statistics". Chaos, Solitons & Fractals. 118: 307–310. arXiv:1808.01891. Bibcode:2019CSF...118..307A. doi:10.1016/j.chaos.2018.11.033. ISSN 0960-0779. S2CID 119207713.
- ^ Hristopulos, Dionissios T.; Petrakis, Manolis P.; Kaniadakis, Giorgio (2014). "Finite-size effects on return interval distributions for weakest-link-scaling systems". Physical Review E. 89 (5): 052142. arXiv:1308.1881. Bibcode:2014PhRvE..89e2142H. doi:10.1103/PhysRevE.89.052142. ISSN 1539-3755. PMID 25353774. S2CID 22310350.
- ^ da Silva, Sérgio Luiz E. F. (2021). "κ-generalised Gutenberg–Richter law and the self-similarity of earthquakes". Chaos, Solitons & Fractals. 143: 110622. Bibcode:2021CSF...14310622D. doi:10.1016/j.chaos.2020.110622. ISSN 0960-0779. S2CID 234063959.
- ^ Souza, N. T. C. M.; Anselmo, D. H. A. L.; Silva, R.; Vasconcelos, M. S.; Mello, V. D. (2014). "A κ -statistical analysis of the Y-chromosome". EPL (Europhysics Letters). 108 (3): 38004. doi:10.1209/0295-5075/108/38004. ISSN 0295-5075. S2CID 122456729.
- ^ Costa, M. O.; Silva, R.; Anselmo, D. H. A. L.; Silva, J. R. P. (2019). "Analysis of human DNA through power-law statistics". Physical Review E. 99 (2): 022112. Bibcode:2019PhRvE..99b2112C. doi:10.1103/PhysRevE.99.022112. ISSN 2470-0045. PMID 30934358. S2CID 91186653.
- ^ Clementi, Fabio; Gallegati, Mauro; Kaniadakis, Giorgio (2012). "A new model of income distribution: the κ-generalized distribution". Journal of Economics. 105 (1): 63–91. doi:10.1007/s00712-011-0221-0. hdl:11393/73598. ISSN 0931-8658. S2CID 155080665.
- ^ Trivellato, Barbara (2013). "Deformed Exponentials and Applications to Finance". Entropy. 15 (12): 3471–3489. Bibcode:2013Entrp..15.3471T. doi:10.3390/e15093471. ISSN 1099-4300.
- ^ Kaniadakis, Giorgio; Baldi, Mauro M.; Deisboeck, Thomas S.; Grisolia, Giulia; Hristopulos, Dionissios T.; Scarfone, Antonio M.; Sparavigna, Amelia; Wada, Tatsuaki; Lucia, Umberto (2020). "The κ-statistics approach to epidemiology". Scientific Reports. 10 (1): 19949. arXiv:2012.00629. Bibcode:2020NatSR..1019949K. doi:10.1038/s41598-020-76673-3. ISSN 2045-2322. PMC 7673996. PMID 33203913.
- ^ Abe, S.; Kaniadakis, G.; Scarfone, A. M. (2004) [2004]. "Stabilities of generalized entropies". Journal of Physics A: Mathematical and General. 37 (44): 10513–10519. arXiv:cond-mat/0401290. Bibcode:2004JPhA...3710513A. doi:10.1088/0305-4470/37/44/004. S2CID 16080176.
- ^ Kaniadakis, G. (2001). "H-theorem and generalized entropies within the framework of nonlinear kinetics". Physics Letters A. 288 (5–6): 283–291. arXiv:cond-mat/0109192. Bibcode:2001PhLA..288..283K. doi:10.1016/S0375-9601(01)00543-6. S2CID 119445915.
- ^ a b Kaniadakis, Giorgio (2013-09-25). "Theoretical Foundations and Mathematical Formalism of the Power-Law Tailed Statistical Distributions". Entropy. 15 (12): 3983–4010. arXiv:1309.6536. Bibcode:2013Entrp..15.3983K. doi:10.3390/e15103983. ISSN 1099-4300.
- ^ a b c Scarfone, A.M. (2017). "κ -deformed Fourier transform". Physica A: Statistical Mechanics and Its Applications. 480: 63–78. arXiv:2206.06869. Bibcode:2017PhyA..480...63S. doi:10.1016/j.physa.2017.03.036. S2CID 126079408.
External links