In information theory, joint entropy is a measure of the uncertainty associated with a set of variables.[1]
Definition
The joint Shannon entropy (in bits) of two discrete random variables
and
with images
and
is defined as[2]: 16
![{\displaystyle \mathrm {H} (X,Y)=-\sum _{x\in {\mathcal {X}}}\sum _{y\in {\mathcal {Y}}}P(x,y)\log _{2}[P(x,y)]}](./1c1b92b469840ecac93f75eff9beef3d03d6bbc1.svg)
where
and
are particular values of
and
, respectively,
is the joint probability of these values occurring together, and
is defined to be 0 if
.
For more than two random variables
this expands to
![{\displaystyle \mathrm {H} (X_{1},...,X_{n})=-\sum _{x_{1}\in {\mathcal {X}}_{1}}...\sum _{x_{n}\in {\mathcal {X}}_{n}}P(x_{1},...,x_{n})\log _{2}[P(x_{1},...,x_{n})]}](./453bf0f18adcd1b4160557f8e3be47f6202abd1d.svg)
where
are particular values of
, respectively,
is the probability of these values occurring together, and
is defined to be 0 if
.
Properties
Nonnegativity
The joint entropy of a set of random variables is a nonnegative number.


Greater than individual entropies
The joint entropy of a set of variables is greater than or equal to the maximum of all of the individual entropies of the variables in the set.
![{\displaystyle \mathrm {H} (X,Y)\geq \max \left[\mathrm {H} (X),\mathrm {H} (Y)\right]}](./d8ef6202e31c5bf393a72c24d9972de4e24560f9.svg)

Less than or equal to the sum of individual entropies
The joint entropy of a set of variables is less than or equal to the sum of the individual entropies of the variables in the set. This is an example of subadditivity. This inequality is an equality if and only if
and
are statistically independent.[2]: 30


Relations to other entropy measures
Joint entropy is used in the definition of conditional entropy[2]: 22
,
and
.
For two variables
and
, this means that
.
Joint entropy is also used in the definition of mutual information[2]: 21
.
In quantum information theory, the joint entropy is generalized into the joint quantum entropy.
Joint differential entropy
Definition
The above definition is for discrete random variables and just as valid in the case of continuous random variables. The continuous version of discrete joint entropy is called joint differential (or continuous) entropy. Let
and
be a continuous random variables with a joint probability density function
. The differential joint entropy
is defined as[2]: 249

For more than two continuous random variables
the definition is generalized to:

The integral is taken over the support of
. It is possible that the integral does not exist in which case we say that the differential entropy is not defined.
Properties
As in the discrete case the joint differential entropy of a set of random variables is smaller or equal than the sum of the entropies of the individual random variables:
[2]: 253
The following chain rule holds for two random variables:

In the case of more than two random variables this generalizes to:[2]: 253

Joint differential entropy is also used in the definition of the mutual information between continuous random variables:

References
- ^ Theresa M. Korn; Korn, Granino Arthur (January 2000). Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. New York: Dover Publications. ISBN 0-486-41147-8.
- ^ a b c d e f g Thomas M. Cover; Joy A. Thomas (18 July 2006). Elements of Information Theory. Hoboken, New Jersey: Wiley. ISBN 0-471-24195-4.