Influential observation

In statistics, an influential observation is an observation for a statistical calculation whose deletion from the dataset would noticeably change the result of the calculation.[1] In particular, in regression analysis an influential observation is one whose deletion has a large effect on the parameter estimates.[2]

Assessment

Various methods have been proposed for measuring influence.[3][4] Assume an estimated regression , where is an n×1 column vector for the response variable, is the n×k design matrix of explanatory variables (including a constant), is the n×1 residual vector, and is a k×1 vector of estimates of some population parameter . Also define , the projection matrix of . Then we have the following measures of influence:

  1. , where denotes the coefficients estimated with the i-th row of deleted, denotes the i-th value of matrix's main diagonal. Thus DFBETA measures the difference in each parameter estimate with and without the influential point. There is a DFBETA for each variable and each observation (if there are N observations and k variables there are N·k DFBETAs).[5] Table shows DFBETAs for the third dataset from Anscombe's quartet (bottom left chart in the figure):
x y intercept slope
10.0 7.46 -0.005 -0.044
8.0 6.77 -0.037 0.019
13.0 12.74 -357.910 525.268
9.0 7.11 -0.033 0
11.0 7.81 0.049 -0.117
14.0 8.84 0.490 -0.667
6.0 6.08 0.027 -0.021
4.0 5.39 0.241 -0.209
12.0 8.15 0.137 -0.231
7.0 6.42 -0.020 0.013
5.0 5.73 0.105 -0.087
  1. DFFITS - difference in fits
  2. Cook's D measures the effect of removing a data point on all the parameters combined.[2]

Outliers, leverage and influence

An outlier may be defined as a data point that differs markedly from other observations.[6][7] A high-leverage point are observations made at extreme values of independent variables.[8] Both types of atypical observations will force the regression line to be close to the point.[2] In Anscombe's quartet, the bottom right image has a point with high leverage and the bottom left image has an outlying point.

See also

References

  1. ^ Burt, James E.; Barber, Gerald M.; Rigby, David L. (2009), Elementary Statistics for Geographers, Guilford Press, p. 513, ISBN 9781572304840.
  2. ^ a b c Everitt, Brian (1998). The Cambridge Dictionary of Statistics. Cambridge, UK New York: Cambridge University Press. ISBN 0-521-59346-8.
  3. ^ Winner, Larry (March 25, 2002). "Influence Statistics, Outliers, and Collinearity Diagnostics".
  4. ^ Belsley, David A.; Kuh, Edwin; Welsh, Roy E. (1980). Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. Wiley Series in Probability and Mathematical Statistics. New York: John Wiley & Sons. pp. 11–16. ISBN 0-471-05856-4.
  5. ^ "Outliers and DFBETA" (PDF). Archived (PDF) from the original on May 11, 2013.
  6. ^ Grubbs, F. E. (February 1969). "Procedures for detecting outlying observations in samples". Technometrics. 11 (1): 1–21. doi:10.1080/00401706.1969.10490657. An outlying observation, or "outlier," is one that appears to deviate markedly from other members of the sample in which it occurs.
  7. ^ Maddala, G. S. (1992). "Outliers". Introduction to Econometrics (2nd ed.). New York: MacMillan. pp. 89. ISBN 978-0-02-374545-4. An outlier is an observation that is far removed from the rest of the observations.
  8. ^ Everitt, B. S. (2002). Cambridge Dictionary of Statistics. Cambridge University Press. ISBN 0-521-81099-X.

Further reading