In mathematics, the modular lambda function λ(τ)[note 1] is a highly symmetric holomorphic function on the complex upper half-plane. It is invariant under the fractional linear action of the congruence group Γ(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the modular curve X(2). Over any point τ, its value can be described as a cross ratio of the branch points of a ramified double cover of the projective line by the elliptic curve
, where the map is defined as the quotient by the [−1] involution.
The q-expansion, where
is the nome, is given by:
. OEIS: A115977
By symmetrizing the lambda function under the canonical action of the symmetric group S3 on X(2), and then normalizing suitably, one obtains a function on the upper half-plane that is invariant under the full modular group
, and it is in fact Klein's modular j-invariant.
Modular properties
The function
is invariant under the group generated by[1]

The generators of the modular group act by[2]


Consequently, the action of the modular group on
is that of the anharmonic group, giving the six values of the cross-ratio:[3]

Relations to other functions
It is the square of the elliptic modulus,[4] that is,
. In terms of the Dedekind eta function
and theta functions,[4]

and,

where[5]



In terms of the half-periods of Weierstrass's elliptic functions, let
be a fundamental pair of periods with
.

we have[4]

Since the three half-period values are distinct, this shows that
does not take the value 0 or 1.[4]
The relation to the j-invariant is[6][7]

which is the j-invariant of the elliptic curve of Legendre form
Given
, let

where
is the complete elliptic integral of the first kind with parameter
.
Then

Modular equations
The modular equation of degree
(where
is a prime number) is an algebraic equation in
and
. If
and
, the modular equations of degrees
are, respectively,[8]




The quantity
(and hence
) can be thought of as a holomorphic function on the upper half-plane
:

Since
, the modular equations can be used to give algebraic values of
for any prime
.[note 2] The algebraic values of
are also given by[9][note 3]


where
is the lemniscate sine and
is the lemniscate constant.
Lambda-star
Definition and computation of lambda-star
The function
[10] (where
) gives the value of the elliptic modulus
, for which the complete elliptic integral of the first kind
and its complementary counterpart
are related by following expression:
![{\displaystyle {\frac {K\left[{\sqrt {1-\lambda ^{*}(x)^{2}}}\right]}{K[\lambda ^{*}(x)]}}={\sqrt {x}}}](./fdb268d3cffe21cb75f2a37b5f277f3e65609070.svg)
The values of
can be computed as follows:

![{\displaystyle \lambda ^{*}(x)=\left[\sum _{a=-\infty }^{\infty }\exp[-(a+1/2)^{2}\pi {\sqrt {x}}]\right]^{2}\left[\sum _{a=-\infty }^{\infty }\exp(-a^{2}\pi {\sqrt {x}})\right]^{-2}}](./1b8070bd15a4b2a9b9bd621ffb37eece379cb864.svg)
![{\displaystyle \lambda ^{*}(x)=\left[\sum _{a=-\infty }^{\infty }\operatorname {sech} [(a+1/2)\pi {\sqrt {x}}]\right]\left[\sum _{a=-\infty }^{\infty }\operatorname {sech} (a\pi {\sqrt {x}})\right]^{-1}}](./c4d176424e648ac0676545cec2e165cf27d61f78.svg)
The functions
and
are related to each other in this way:

Properties of lambda-star
Every
value of a positive rational number is a positive algebraic number:

and
(the complete elliptic integral of the second kind) can be expressed in closed form in terms of the gamma function for any
, as Selberg and Chowla proved in 1949.[11][12]
The following expression is valid for all
:
![{\displaystyle {\sqrt {n}}=\sum _{a=1}^{n}\operatorname {dn} \left[{\frac {2a}{n}}K\left[\lambda ^{*}\left({\frac {1}{n}}\right)\right];\lambda ^{*}\left({\frac {1}{n}}\right)\right]}](./fe98aa85642729039559cf8044f68b293548acf6.svg)
where
is the Jacobi elliptic function delta amplitudinis with modulus
.
By knowing one
value, this formula can be used to compute related
values:[9]
![{\displaystyle \lambda ^{*}(n^{2}x)=\lambda ^{*}(x)^{n}\prod _{a=1}^{n}\operatorname {sn} \left\{{\frac {2a-1}{n}}K[\lambda ^{*}(x)];\lambda ^{*}(x)\right\}^{2}}](./ddcba0773112f9e1a5d79fd395de8e76759416ca.svg)
where
and
is the Jacobi elliptic function sinus amplitudinis with modulus
.
Further relations:

![{\displaystyle [\lambda ^{*}(x)+1][\lambda ^{*}(4/x)+1]=2}](./7e015a4b8dbb80bb4bece1c0c5224457cda46f58.svg)
![{\displaystyle \lambda ^{*}(4x)={\frac {1-{\sqrt {1-\lambda ^{*}(x)^{2}}}}{1+{\sqrt {1-\lambda ^{*}(x)^{2}}}}}=\tan \left\{{\frac {1}{2}}\arcsin[\lambda ^{*}(x)]\right\}^{2}}](./9c58fcee836e9d6727e9c5a2dd9fe5ccf8ed827b.svg)
![{\displaystyle \lambda ^{*}(x)-\lambda ^{*}(9x)=2[\lambda ^{*}(x)\lambda ^{*}(9x)]^{1/4}-2[\lambda ^{*}(x)\lambda ^{*}(9x)]^{3/4}}](./de8a0866508ba81524c948c3c4f6cf7ab4f23c0d.svg)
Ramanujan's class invariants
Ramanujan's class invariants
and
are defined as[13]


where
. For such
, the class invariants are algebraic numbers. For example

Identities with the class invariants include[14]

The class invariants are very closely related to the Weber modular functions
and
. These are the relations between lambda-star and the class invariants:
![{\displaystyle G_{n}=\sin\{2\arcsin[\lambda ^{*}(n)]\}^{-1/12}=1{\Big /}\left[{\sqrt[{12}]{2\lambda ^{*}(n)}}{\sqrt[{24}]{1-\lambda ^{*}(n)^{2}}}\right]}](./c8d7ba82805bad5b61422ef8ab1e6d8ff0653f93.svg)
![{\displaystyle g_{n}=\tan\{2\arctan[\lambda ^{*}(n)]\}^{-1/12}={\sqrt[{12}]{[1-\lambda ^{*}(n)^{2}]/[2\lambda ^{*}(n)]}}}](./9d2bf73ba7824016a4c00cb2ba22aecdd1e16dbf.svg)
![{\displaystyle \lambda ^{*}(n)=\tan \left\{{\frac {1}{2}}\arctan[g_{n}^{-12}]\right\}={\sqrt {g_{n}^{24}+1}}-g_{n}^{12}}](./1ac2a4151df22951f005c839445387ea73698793.svg)
Other appearances
Little Picard theorem
The lambda function is used in the original proof of the Little Picard theorem, that an entire non-constant function on the complex plane cannot omit more than one value. This theorem was proved by Picard in 1879.[15] Suppose if possible that f is entire and does not take the values 0 and 1. Since λ is holomorphic, it has a local holomorphic inverse ω defined away from 0,1,∞. Consider the function z → ω(f(z)). By the Monodromy theorem this is holomorphic and maps the complex plane C to the upper half plane. From this it is easy to construct a holomorphic function from C to the unit disc, which by Liouville's theorem must be constant.[16]
Moonshine
The function
is the normalized Hauptmodul for the group
, and its q-expansion
, OEIS: A007248 where
, is the graded character of any element in conjugacy class 4C of the monster group acting on the monster vertex algebra.
- ^ Chandrasekharan (1985) p.115
- ^ Chandrasekharan (1985) p.109
- ^ Chandrasekharan (1985) p.110
- ^ a b c d Chandrasekharan (1985) p.108
- ^ Chandrasekharan (1985) p.63
- ^ Chandrasekharan (1985) p.117
- ^ Rankin (1977) pp.226–228
- ^ Borwein, Jonathan M.; Borwein, Peter B. (1987). Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity (First ed.). Wiley-Interscience. ISBN 0-471-83138-7. p. 103–109, 134
- ^ a b Jacobi, Carl Gustav Jacob (1829). Fundamenta nova theoriae functionum ellipticarum (in Latin). p. 42
- ^ Borwein, Jonathan M.; Borwein, Peter B. (1987). Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity (First ed.). Wiley-Interscience. ISBN 0-471-83138-7. p. 152
- ^ Chowla, S.; Selberg, A. (1949). "On Epstein's Zeta Function (I)". Proceedings of the National Academy of Sciences. 35 (7): 373. doi:10.1073/PNAS.35.7.371. PMC 1063041. S2CID 45071481.
- ^ Chowla, S.; Selberg, A. "On Epstein's Zeta-Function". EuDML. pp. 86–110.
- ^ Berndt, Bruce C.; Chan, Heng Huat; Zhang, Liang-Cheng (6 June 1997). "Ramanujan's class invariants, Kronecker's limit formula, and modular equations". Transactions of the American Mathematical Society. 349 (6): 2125–2173.
- ^ Eymard, Pierre; Lafon, Jean-Pierre (1999). Autour du nombre Pi (in French). HERMANN. ISBN 2705614435. p. 240
- ^ Chandrasekharan (1985) p.121
- ^ Chandrasekharan (1985) p.118
References
Notes
- ^
is not a modular function (per the Wikipedia definition), but every modular function is a rational function in
. Some authors use a non-equivalent definition of "modular functions".
- ^ For any prime power, we can iterate the modular equation of degree
. This process can be used to give algebraic values of
for any
- ^
is algebraic for every
Other
- Abramowitz, Milton; Stegun, Irene A., eds. (1972), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover Publications, ISBN 978-0-486-61272-0, Zbl 0543.33001
- Chandrasekharan, K. (1985), Elliptic Functions, Grundlehren der mathematischen Wissenschaften, vol. 281, Springer-Verlag, pp. 108–121, ISBN 3-540-15295-4, Zbl 0575.33001
- Conway, John Horton; Norton, Simon (1979), "Monstrous moonshine", Bulletin of the London Mathematical Society, 11 (3): 308–339, doi:10.1112/blms/11.3.308, MR 0554399, Zbl 0424.20010
- Rankin, Robert A. (1977), Modular Forms and Functions, Cambridge University Press, ISBN 0-521-21212-X, Zbl 0376.10020
- Reinhardt, W. P.; Walker, P. L. (2010), "Elliptic Modular Function", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
- Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, pp. 139 and 298, 1987.
- Conway, J. H. and Norton, S. P. "Monstrous Moonshine." Bull. London Math. Soc. 11, 308-339, 1979.
- Selberg, A. and Chowla, S. "On Epstein's Zeta-Function." J. reine angew. Math. 227, 86-110, 1967.
External links