Dual snub 24-cell

Dual snub 24-cell

Orthogonal projection
Type 4-polytope
Cells 96
Faces 432 144 kites
288 Isosceles triangle
Edges 480
Vertices 144
Dual Snub 24-cell
Properties convex

In geometry, the dual snub 24-cell is a 144 vertex convex 4-polytope composed of 96 irregular cells. Each cell has faces of two kinds: 3 kites and 6 isosceles triangles.[1] The polytope has a total of 432 faces (144 kites and 288 isosceles triangles) and 480 edges.

Geometry

The dual snub 24-cell, first described by Koca et al. in 2011,[2] is the dual polytope of the snub 24-cell, a semiregular polytope first described by Thorold Gosset in 1900.[3]

Construction

The vertices of a dual snub 24-cell are obtained using quaternion simple roots (T') in the generation of the 600 vertices of the 120-cell.[4] The following describe and 24-cells as quaternion orbit weights of D4 under the Weyl group W(D4):
O(0100) : T = {±1,±e1,±e2,±e3,(±1±e1±e2±e3)/2}
O(1000) : V1
O(0010) : V2
O(0001) : V3

With quaternions where is the conjugate of and and , then the Coxeter group is the symmetry group of the 600-cell and the 120-cell of order 14400.

Given such that and as an exchange of within where is the golden ratio, we can construct:

  • the snub 24-cell
  • the 600-cell
  • the 120-cell
  • the alternate snub 24-cell

and finally the dual snub 24-cell can then be defined as the orbits of .

Projections

3D Orthogonal projections
2D Orthogonal projections

Dual

The dual polytope of this polytope is the Snub 24-cell.[5]

See also

Citations

  1. ^ Koca, Al-Ajmi & Ozdes Koca 2011, pp. 986–987, Fig. 4.
  2. ^ Koca, Al-Ajmi & Ozdes Koca 2011.
  3. ^ Gosset 1900.
  4. ^ Koca, Al-Ajmi & Ozdes Koca 2011, pp. 986–988, 6. Dual of the snub 24-cell.
  5. ^ Coxeter 1973, pp. 151–153, §8.4. The snub {3,4,3}.

References

  • Gosset, Thorold (1900). "On the Regular and Semi-Regular Figures in Space of n Dimensions". Messenger of Mathematics. Macmillan.
  • Coxeter, H.S.M. (1973) [1948]. Regular Polytopes (3rd ed.). New York: Dover.
  • Conway, John; Burgiel, Heidi; Goodman-Strauss, Chaim (2008). The Symmetries of Things. ISBN 978-1-56881-220-5.
  • Koca, Mehmet; Ozdes Koca, Nazife; Al-Barwani, Muataz (2012). "Snub 24-Cell Derived from the Coxeter-Weyl Group W(D4)". Int. J. Geom. Methods Mod. Phys. 09 (8). arXiv:1106.3433. doi:10.1142/S0219887812500685. S2CID 119288632.
  • Koca, Mehmet; Al-Ajmi, Mudhahir; Ozdes Koca, Nazife (2011). "Quaternionic representation of snub 24-cell and its dual polytope derived from E8 root system". Linear Algebra and Its Applications. 434 (4): 977–989. arXiv:0906.2109. doi:10.1016/j.laa.2010.10.005. ISSN 0024-3795. S2CID 18278359.
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds