Double category

In mathematics, especially category theory, a double category is a generalization of a category where instead of morphisms, we have vertical morphisms, horizontal morphisms and 2-morphisms. Introduced by Ehresmann in 1960s,[1][2] the notion may be compared with that of a bicategory; namely, the notion of a bicategory is obtained by enrichment, while the notion of a double category is obtained by internalization.[3] Precisely, a double category is a category internal to Cat (roughly meaning a category object).[4]

Just as iterating the process of obtaining the notion of a 2-category leads to that of an n-category, iterating the process for a double category leads to that of an n-fold category.

Footnotes

  1. ^ C. Ehresmann. Catégories Structurées. Ann. Sci. Ecole Norm. Sup 80, pp 349-425. 1963.
  2. ^ C. Ehresmann. Catégories et Structures, Dunod, Paris, 1965.
  3. ^ Morton 2009, § 1. Introduction.
  4. ^ Morton 2009, Definition 2.2.1.

References

  • Morton, Jeffrey C. (2009). "Double bicategories and double cospans". Journal of Homotopy and Related Structures. 4 (1): 389–428. arXiv:math/0611930.
  • Kelly, G. M.; Street, Ross (1974). "Review of the elements of 2-categories". In Kelly, Gregory M. (ed.). Category Seminar: Proceedings of the Sydney Category Theory Seminar, 1972/1973. Lecture Notes in Mathematics. Vol. 420. Springer. pp. 75–103. doi:10.1007/BFb0063101. ISBN 978-3-540-06966-9. MR 0357542.

Further reading