In probability theory and statistics, a complex random vector is typically a tuple of complex-valued random variables, and generally is a random variable taking values in a vector space over the field of complex numbers. If
are complex-valued random variables, then the n-tuple
is a complex random vector. Complex random variables can always be considered as pairs of real random vectors: their real and imaginary parts.
Some concepts of real random vectors have a straightforward generalization to complex random vectors. For example, the definition of the mean of a complex random vector. Other concepts are unique to complex random vectors.
Applications of complex random vectors are found in digital signal processing.
Definition
A complex random vector
on the probability space
is a function
such that the vector
is a real random vector on
where
denotes the real part of
and
denotes the imaginary part of
.[1]: p. 292
Cumulative distribution function
The generalization of the cumulative distribution function from real to complex random variables is not obvious because expressions of the form
make no sense. However expressions of the form
make sense. Therefore, the cumulative distribution function
of a random vector
is defined as
 | | Eq.1 |
where
.
Expectation
As in the real case the expectation (also called expected value) of a complex random vector is taken component-wise.[1]: p. 293
![{\displaystyle \operatorname {E} [\mathbf {Z} ]=(\operatorname {E} [Z_{1}],\ldots ,\operatorname {E} [Z_{n}])^{T}}](./9bad8687a134b34189596765316018f79fdca495.svg) | | Eq.2 |
Covariance matrix and pseudo-covariance matrix
The covariance matrix (also called second central moment)
contains the covariances between all pairs of components. The covariance matrix of an
random vector is an
matrix whose
th element is the covariance between the i th and the j th random variables.[2]: p.372 Unlike in the case of real random variables, the covariance between two random variables involves the complex conjugate of one of the two. Thus the covariance matrix is a Hermitian matrix.[1]: p. 293
| | Eq.3 |
![{\displaystyle \operatorname {K} _{\mathbf {Z} \mathbf {Z} }={\begin{bmatrix}\mathrm {E} [(Z_{1}-\operatorname {E} [Z_{1}]){\overline {(Z_{1}-\operatorname {E} [Z_{1}])}}]&\mathrm {E} [(Z_{1}-\operatorname {E} [Z_{1}]){\overline {(Z_{2}-\operatorname {E} [Z_{2}])}}]&\cdots &\mathrm {E} [(Z_{1}-\operatorname {E} [Z_{1}]){\overline {(Z_{n}-\operatorname {E} [Z_{n}])}}]\\\\\mathrm {E} [(Z_{2}-\operatorname {E} [Z_{2}]){\overline {(Z_{1}-\operatorname {E} [Z_{1}])}}]&\mathrm {E} [(Z_{2}-\operatorname {E} [Z_{2}]){\overline {(Z_{2}-\operatorname {E} [Z_{2}])}}]&\cdots &\mathrm {E} [(Z_{2}-\operatorname {E} [Z_{2}]){\overline {(Z_{n}-\operatorname {E} [Z_{n}])}}]\\\\\vdots &\vdots &\ddots &\vdots \\\\\mathrm {E} [(Z_{n}-\operatorname {E} [Z_{n}]){\overline {(Z_{1}-\operatorname {E} [Z_{1}])}}]&\mathrm {E} [(Z_{n}-\operatorname {E} [Z_{n}]){\overline {(Z_{2}-\operatorname {E} [Z_{2}])}}]&\cdots &\mathrm {E} [(Z_{n}-\operatorname {E} [Z_{n}]){\overline {(Z_{n}-\operatorname {E} [Z_{n}])}}]\end{bmatrix}}}](./445eafa0ab8d1d761c1c34d3bb993b4598ec4b15.svg)
The pseudo-covariance matrix (also called relation matrix) is defined replacing Hermitian transposition by transposition in the definition above.
| | Eq.4 |
![{\displaystyle \operatorname {J} _{\mathbf {Z} \mathbf {Z} }={\begin{bmatrix}\mathrm {E} [(Z_{1}-\operatorname {E} [Z_{1}])(Z_{1}-\operatorname {E} [Z_{1}])]&\mathrm {E} [(Z_{1}-\operatorname {E} [Z_{1}])(Z_{2}-\operatorname {E} [Z_{2}])]&\cdots &\mathrm {E} [(Z_{1}-\operatorname {E} [Z_{1}])(Z_{n}-\operatorname {E} [Z_{n}])]\\\\\mathrm {E} [(Z_{2}-\operatorname {E} [Z_{2}])(Z_{1}-\operatorname {E} [Z_{1}])]&\mathrm {E} [(Z_{2}-\operatorname {E} [Z_{2}])(Z_{2}-\operatorname {E} [Z_{2}])]&\cdots &\mathrm {E} [(Z_{2}-\operatorname {E} [Z_{2}])(Z_{n}-\operatorname {E} [Z_{n}])]\\\\\vdots &\vdots &\ddots &\vdots \\\\\mathrm {E} [(Z_{n}-\operatorname {E} [Z_{n}])(Z_{1}-\operatorname {E} [Z_{1}])]&\mathrm {E} [(Z_{n}-\operatorname {E} [Z_{n}])(Z_{2}-\operatorname {E} [Z_{2}])]&\cdots &\mathrm {E} [(Z_{n}-\operatorname {E} [Z_{n}])(Z_{n}-\operatorname {E} [Z_{n}])]\end{bmatrix}}}](./50248ec68758163e693b5fa474537f0d953110ee.svg)
- Properties
The covariance matrix is a hermitian matrix, i.e.[1]: p. 293
.
The pseudo-covariance matrix is a symmetric matrix, i.e.
.
The covariance matrix is a positive semidefinite matrix, i.e.
.
Covariance matrices of real and imaginary parts
By decomposing the random vector
into its real part
and imaginary part
(i.e.
), the pair
has a covariance matrix of the form:

The matrices
and
can be related to the covariance matrices of
and
via the following expressions:
![{\displaystyle {\begin{aligned}&\operatorname {K} _{\mathbf {X} \mathbf {X} }=\operatorname {E} [(\mathbf {X} -\operatorname {E} [\mathbf {X} ])(\mathbf {X} -\operatorname {E} [\mathbf {X} ])^{\mathrm {T} }]={\tfrac {1}{2}}\operatorname {Re} (\operatorname {K} _{\mathbf {Z} \mathbf {Z} }+\operatorname {J} _{\mathbf {Z} \mathbf {Z} })\\&\operatorname {K} _{\mathbf {Y} \mathbf {Y} }=\operatorname {E} [(\mathbf {Y} -\operatorname {E} [\mathbf {Y} ])(\mathbf {Y} -\operatorname {E} [\mathbf {Y} ])^{\mathrm {T} }]={\tfrac {1}{2}}\operatorname {Re} (\operatorname {K} _{\mathbf {Z} \mathbf {Z} }-\operatorname {J} _{\mathbf {Z} \mathbf {Z} })\\&\operatorname {K} _{\mathbf {Y} \mathbf {X} }=\operatorname {E} [(\mathbf {Y} -\operatorname {E} [\mathbf {Y} ])(\mathbf {X} -\operatorname {E} [\mathbf {X} ])^{\mathrm {T} }]={\tfrac {1}{2}}\operatorname {Im} (\operatorname {J} _{\mathbf {Z} \mathbf {Z} }+\operatorname {K} _{\mathbf {Z} \mathbf {Z} })\\&\operatorname {K} _{\mathbf {X} \mathbf {Y} }=\operatorname {E} [(\mathbf {X} -\operatorname {E} [\mathbf {X} ])(\mathbf {Y} -\operatorname {E} [\mathbf {Y} ])^{\mathrm {T} }]={\tfrac {1}{2}}\operatorname {Im} (\operatorname {J} _{\mathbf {Z} \mathbf {Z} }-\operatorname {K} _{\mathbf {Z} \mathbf {Z} })\\\end{aligned}}}](./02b2d81c9eb40be718176122b197e7384c6ca81c.svg)
Conversely:

Cross-covariance matrix and pseudo-cross-covariance matrix
The cross-covariance matrix between two complex random vectors
is defined as:
![{\displaystyle \operatorname {K} _{\mathbf {Z} \mathbf {W} }=\operatorname {cov} [\mathbf {Z} ,\mathbf {W} ]=\operatorname {E} [(\mathbf {Z} -\operatorname {E} [\mathbf {Z} ]){(\mathbf {W} -\operatorname {E} [\mathbf {W} ])}^{H}]=\operatorname {E} [\mathbf {Z} \mathbf {W} ^{H}]-\operatorname {E} [\mathbf {Z} ]\operatorname {E} [\mathbf {W} ^{H}]}](./9844313bcca0b6e7e67e2c61bae3559a8714b4e4.svg) | | Eq.5 |
![{\displaystyle \operatorname {K} _{\mathbf {Z} \mathbf {W} }={\begin{bmatrix}\mathrm {E} [(Z_{1}-\operatorname {E} [Z_{1}]){\overline {(W_{1}-\operatorname {E} [W_{1}])}}]&\mathrm {E} [(Z_{1}-\operatorname {E} [Z_{1}]){\overline {(W_{2}-\operatorname {E} [W_{2}])}}]&\cdots &\mathrm {E} [(Z_{1}-\operatorname {E} [Z_{1}]){\overline {(W_{n}-\operatorname {E} [W_{n}])}}]\\\\\mathrm {E} [(Z_{2}-\operatorname {E} [Z_{2}]){\overline {(W_{1}-\operatorname {E} [W_{1}])}}]&\mathrm {E} [(Z_{2}-\operatorname {E} [Z_{2}]){\overline {(W_{2}-\operatorname {E} [W_{2}])}}]&\cdots &\mathrm {E} [(Z_{2}-\operatorname {E} [Z_{2}]){\overline {(W_{n}-\operatorname {E} [W_{n}])}}]\\\\\vdots &\vdots &\ddots &\vdots \\\\\mathrm {E} [(Z_{n}-\operatorname {E} [Z_{n}]){\overline {(W_{1}-\operatorname {E} [W_{1}])}}]&\mathrm {E} [(Z_{n}-\operatorname {E} [Z_{n}]){\overline {(W_{2}-\operatorname {E} [W_{2}])}}]&\cdots &\mathrm {E} [(Z_{n}-\operatorname {E} [Z_{n}]){\overline {(W_{n}-\operatorname {E} [W_{n}])}}]\end{bmatrix}}}](./9941690a38b08ff9f3b9be4bd1de0bb2fb9a67b5.svg)
And the pseudo-cross-covariance matrix is defined as:
![{\displaystyle \operatorname {J} _{\mathbf {Z} \mathbf {W} }=\operatorname {cov} [\mathbf {Z} ,{\overline {\mathbf {W} }}]=\operatorname {E} [(\mathbf {Z} -\operatorname {E} [\mathbf {Z} ]){(\mathbf {W} -\operatorname {E} [\mathbf {W} ])}^{T}]=\operatorname {E} [\mathbf {Z} \mathbf {W} ^{T}]-\operatorname {E} [\mathbf {Z} ]\operatorname {E} [\mathbf {W} ^{T}]}](./3e6a151a8db17da379cb32babce0e737bca9a8b9.svg) | | Eq.6 |
![{\displaystyle \operatorname {J} _{\mathbf {Z} \mathbf {W} }={\begin{bmatrix}\mathrm {E} [(Z_{1}-\operatorname {E} [Z_{1}])(W_{1}-\operatorname {E} [W_{1}])]&\mathrm {E} [(Z_{1}-\operatorname {E} [Z_{1}])(W_{2}-\operatorname {E} [W_{2}])]&\cdots &\mathrm {E} [(Z_{1}-\operatorname {E} [Z_{1}])(W_{n}-\operatorname {E} [W_{n}])]\\\\\mathrm {E} [(Z_{2}-\operatorname {E} [Z_{2}])(W_{1}-\operatorname {E} [W_{1}])]&\mathrm {E} [(Z_{2}-\operatorname {E} [Z_{2}])(W_{2}-\operatorname {E} [W_{2}])]&\cdots &\mathrm {E} [(Z_{2}-\operatorname {E} [Z_{2}])(W_{n}-\operatorname {E} [W_{n}])]\\\\\vdots &\vdots &\ddots &\vdots \\\\\mathrm {E} [(Z_{n}-\operatorname {E} [Z_{n}])(W_{1}-\operatorname {E} [W_{1}])]&\mathrm {E} [(Z_{n}-\operatorname {E} [Z_{n}])(W_{2}-\operatorname {E} [W_{2}])]&\cdots &\mathrm {E} [(Z_{n}-\operatorname {E} [Z_{n}])(W_{n}-\operatorname {E} [W_{n}])]\end{bmatrix}}}](./240fc2c9717f84911d95a271d7ca87595b185cc5.svg)
Two complex random vectors
and
are called uncorrelated if
.
Independence
Two complex random vectors
and
are called independent if
 | | Eq.7 |
where
and
denote the cumulative distribution functions of
and
as defined in Eq.1 and
denotes their joint cumulative distribution function. Independence of
and
is often denoted by
.
Written component-wise,
and
are called independent if
.
Circular symmetry
A complex random vector
is called circularly symmetric if for every deterministic
the distribution of
equals the distribution of
.[3]: pp. 500–501
- Properties
- The expectation of a circularly symmetric complex random vector is either zero or it is not defined.[3]: p. 500
- The pseudo-covariance matrix of a circularly symmetric complex random vector is zero.[3]: p. 584
Proper complex random vectors
A complex random vector
is called proper if the following three conditions are all satisfied:[1]: p. 293
(zero mean)
(all components have finite variance)
![{\displaystyle \operatorname {E} [\mathbf {Z} \mathbf {Z} ^{T}]=0}](./e567ff4fa3785973cc8d53106ec6a0e075d969e9.svg)
Two complex random vectors
are called jointly proper is the composite random vector
is proper.
- Properties
- A complex random vector
is proper if, and only if, for all (deterministic) vectors
the complex random variable
is proper.[1]: p. 293
- Linear transformations of proper complex random vectors are proper, i.e. if
is a proper random vectors with
components and
is a deterministic
matrix, then the complex random vector
is also proper.[1]: p. 295
- Every circularly symmetric complex random vector with finite variance of all its components is proper.[1]: p. 295
- There are proper complex random vectors that are not circularly symmetric.[1]: p. 504
- A real random vector is proper if and only if it is constant.
- Two jointly proper complex random vectors are uncorrelated if and only if their covariance matrix is zero, i.e. if
.
Cauchy-Schwarz inequality
The Cauchy-Schwarz inequality for complex random vectors is
.
Characteristic function
The characteristic function of a complex random vector
with
components is a function
defined by:[1]: p. 295
![{\displaystyle \varphi _{\mathbf {Z} }(\mathbf {\omega } )=\operatorname {E} \left[e^{i\Re {(\mathbf {\omega } ^{H}\mathbf {Z} )}}\right]=\operatorname {E} \left[e^{i(\Re {(\omega _{1})}\Re {(Z_{1})}+\Im {(\omega _{1})}\Im {(Z_{1})}+\cdots +\Re {(\omega _{n})}\Re {(Z_{n})}+\Im {(\omega _{n})}\Im {(Z_{n})})}\right]}](./55ef4b68890cb6b51eea0081d9a757a4c9f88849.svg)
See also
References
- ^ a b c d e f g h i j Lapidoth, Amos (2009). A Foundation in Digital Communication. Cambridge University Press. ISBN 978-0-521-19395-5.
- ^ Gubner, John A. (2006). Probability and Random Processes for Electrical and Computer Engineers. Cambridge University Press. ISBN 978-0-521-86470-1.
- ^ a b c Tse, David (2005). Fundamentals of Wireless Communication. Cambridge University Press.