In mathematics, the Christoffel–Darboux formula or Christoffel–Darboux theorem is an identity for a sequence of orthogonal polynomials, introduced by Elwin Bruno Christoffel (1858) and Jean Gaston Darboux (1878).
Christoffel–Darboux formula—if a sequence of polynomials
are of degrees
, and orthogonal with respect to a probability measure
, then

where
are the squared norms, and
are the leading coefficients.
There is also a "confluent form" of this identity by taking
limit:
Christoffel–Darboux formula, confluent form—
Proof
Lemma—Let
be a sequence of polynomials orthonormal with respect to a probability measure
, such that
has degree
, and define(they are called the "Jacobi parameters"), then we have the three-term recurrence[1]
Proof
By definition,
, so if
, then
is a linear combination of
, and thus
. So, to construct
, it suffices to perform Gram-Schmidt process on
using
, which yields the desired recurrence.
Proof of Christoffel–Darboux formula
For any sequence of nonzero constants
, we can change each
to
, and both sides of the equation would remain unchanged. Thus WLOG, scale each
to
.
Since
is a degree
polynomial, it is perpendicular to
, and so
. Thus,
.
Base case:
Induction:
By the three-term recurrence,
Multiply the first by
and the second by
and subtract:
Now substitute in
and simplify.
Specific cases
Hermite
The Hermite polynomials are orthogonal with respect to the gaussian distribution.
The
polynomials are orthogonal with respect to
, and with
.The
polynomials are orthogonal with respect to
, and with
.The confluent form and the three-term recurrence gives
Laguerre
The Laguerre polynomials
are orthonormal with respect to the exponential distribution
, with
, so
Legendre
Associated Legendre polynomials:
![{\displaystyle {\begin{aligned}(\mu -\mu ')\sum _{l=m}^{L}\,(2l+1){\frac {(l-m)!}{(l+m)!}}\,P_{lm}(\mu )P_{lm}(\mu ')=\qquad \qquad \qquad \qquad \qquad \\{\frac {(L-m+1)!}{(L+m)!}}{\big [}P_{L+1\,m}(\mu )P_{Lm}(\mu ')-P_{Lm}(\mu )P_{L+1\,m}(\mu '){\big ]}.\end{aligned}}}](./a6d945c5300d5efab057837a190d40b46cfad121.svg)
Christoffel–Darboux kernel
The summation involved in the Christoffel–Darboux formula is invariant by scaling the polynomials with nonzero constants. Thus, each probability distribution
defines a series of functionswhich are called the Christoffel–Darboux kernels. By the orthogonality, the kernel satisfies In other words, the kernel is an integral operator that orthogonally projects each polynomial to the space of polynomials of degree up to
.
See also
References
- Andrews, George E.; Askey, Richard; Roy, Ranjan (1999), Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, ISBN 978-0-521-62321-6, MR 1688958
- Christoffel, E. B. (1858), "Über die Gaußische Quadratur und eine Verallgemeinerung derselben.", Journal für die Reine und Angewandte Mathematik (in German), 55: 61–82, doi:10.1515/crll.1858.55.61, ISSN 0075-4102, S2CID 123118038
- Darboux, Gaston (1878), "Mémoire sur l'approximation des fonctions de très-grands nombres, et sur une classe étendue de développements en série", Journal de Mathématiques Pures et Appliquées (in French), 4: 5–56, 377–416, JFM 10.0279.01
- Abramowitz, Milton; Stegun, Irene A. (1972), Handbook of Mathematical Functions, Dover Publications, Inc., New York, p. 785, Eq. 22.12.1
- Olver, Frank W. J.; Lozier, Daniel W.; Boisvert, Ronald F.; Clark, Charles W. (2010), "NIST Handbook of Mathematical Functions", NIST Digital Library of Mathematical Functions, Cambridge University Press, p. 438, Eqs. 18.2.12 and 18.2.13, ISBN 978-0-521-19225-5 (Hardback, ISBN 978-0-521-14063-8 Paperback)
- Simons, Frederik J.; Dahlen, F. A.; Wieczorek, Mark A. (2006), "Spatiospectral concentration on a sphere", SIAM Review, 48 (1): 504–536, arXiv:math/0408424, Bibcode:2006SIAMR..48..504S, doi:10.1137/S0036144504445765, S2CID 27519592